首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 436 毫秒
1.
针对气基竖炉直接还原过程无法直接观察还原反应运行程度的难点,基于三界面未反应核模型,在忽略模型球团内部温度及假设球团还原反应的热效应完全发生在固相的条件下,建立了气基竖炉直接还原模型,对铁氧化物价态转变进行了数值模拟和验证。结果表明,由于所建立的气固模型包含3个界面,随着铁氧化物的逐级还原,每个界面的反应半径最终趋于0,而还原反应速率随着竖炉深度的增加呈现出先升高后降低的趋势。球团在竖炉内下降到3 m深度时,出现半径为15 mm的FeO反应界面,此时球团还原率约为28%。随着球团继续在竖炉内下行约2 m到达5 m的深度时,Fe3O4的界面半径减小为0,此时铁氧化物完全转变成了浮氏体形态,球团还原率约为34%。通过改变不同的工艺参数进行模拟可以发现,还原球团金属化率和还原率随着气体温度的升高而增大。当气体温度以50℃、还原气体流量以5 040 m3/h梯度增大时,其对应的球团金属化率分别增大8%和4%左右。相比之下,球团金属化率受下料速度的影响远超过气体温度和还原气体流量,具体表现为,当下料速度增大0.02 t/h时,金属...  相似文献   

2.
根据中国资源特点及国内焦炉煤气利用不合理的现状,认为部分地区发展中小型焦炉煤气-气基竖炉工艺生产高品质直接还原铁在技术上是可行的。将焦炉煤气应用于MIDREX竖炉工艺,基于理论计算,探讨焦炉煤气-MIDREX竖炉生产DRI的煤气用量以及煤气利用率,为中国气基竖炉工艺的发展提供工艺参数。结果表明,焦炉煤气经重整后所得还原气体的H_2和CO体积分数比值为2.18,每生产1tDRI需要消耗焦炉煤气599.70m3。当向竖炉通入1 800m~3/t的还原气体时,竖炉内H_2、CO的利用率分别为32.14%和36.14%,还原气综合利用率为33.61%。  相似文献   

3.
 竖炉还原工艺中焦炉煤气(COG)的消耗量可影响金属铁产量,为了明确O2裂解时焦炉煤气消耗量与竖炉产量的关系,对理想条件下焦炉煤气在竖炉还原工艺中的消耗量和金属铁产量进行了热力学计算。计算结果表明,竖炉生产过程中,作为热源的焦炉煤气消耗量大于作为还原剂的消耗量。补充竖炉内热需求量的方法有两种,补偿方式不同,金属铁产量的变化趋势也不同:直接补充重整焦炉煤气时,金属铁的产量随生成温度的升高而降低,120万t焦炉产生的焦炉煤气在金属铁生成温度为850和900 ℃时,相应的竖炉生产能力分别为50.72万和49.90万t/a;先采用煤气自重整技术再补充额外焦炉煤气时,随金属铁生成温度的升高,金属铁的产量先增大后减小,120万t焦炉产生的焦炉煤气在金属铁生成温度为845和900 ℃时,相应的竖炉生产能力分别为56.69万(最大值)和55.68万t/a。研究内容及结果可为实际的竖炉工艺选择合理的操作参数提供理论指导和依据。  相似文献   

4.
随着钢铁行业碳减排压力的增大,氢冶金技术的应用可有效降低碳排放,其中氢冶金气基竖炉生产工艺受到了国内外的广泛关注。气基竖炉生产的高金属化率DRI可进入电炉生产优质钢材,同时也可生产出50%金属化率的球团作高炉炼铁原料。本文基于典型的氢冶金气氛及温度条件,综合考虑其还原行为,研究了生产不同金属化率球团的适宜工艺参数。结果表明:随着温度升高及还原气中氢气配比的增加,还原速率明显升高,还原后强度降低,还原膨胀指数升高;纯氢与富氢气氛(建议采用HYL气氛)下,在还原温度为1 000℃时,适宜生产92%金属化率DRI;纯氢气氛在还原温度为950℃与富氢气氛(建议采用HYL气氛)在还原温度为1 000℃条件下,适宜制备50%金属化率球团。  相似文献   

5.
球团金属化率是COREX还原过程的重要指标,球团显气孔率直接影响球团在COREX竖炉中的还原程度。模拟COREX竖炉荷重还原条件,研究了不同还原条件对球团还原后金属化率和显气孔率的影响规律,并针对COREX竖炉炉料黏结现象,在球团表面涂覆固体制剂,对还原后涂层球团金属化率和显气孔率进行了分析。研究结果表明,当温度为800~950℃时,随着温度上升,金属化率增大,同时球团显气孔率提高;还原气体中H_2增加时,球团金属化率和显气孔率也会提高,H_2体积分数每增加5%,还原后球团金属化率增加2.6%。在850℃时,轻烧白云石与塑料比值为1∶1时的涂层球团还原后显气孔率和金属化率分别为53.8%和60.2%。  相似文献   

6.
张志刚 《中国冶金》2015,25(9):11-14
竖炉磁化焙烧是处理难选红铁矿较有效的方法。通过对弱磁块矿竖炉磁化焙烧的试验研究,提出了更加科学、高效的竖炉磁化焙烧理论,在现有鞍山式竖炉的基础上,通过高效控制铁矿石竖炉磁化焙烧还原气氛,对竖炉磁化焙烧工艺进行了优化。结果表明:还原气体H2体积分数提高到12%±1%,同时降低CO体积分数,提高块矿焙烧还原温度,可获得最佳的磁化焙烧效果;通过独立设置铁矿石磁化焙烧还原煤气系统与加热煤气系统,可实现还原煤气的成分、流量、压力灵活调节;通过减少还原煤气总量,将矿石还原煤气量降低至1400~1600m3/h,降低竖炉的生产成本;通过独立的还原煤气系统,提高还原煤气中焦炉煤气比例,将H2体积分数控制在12%±1%,矿石磁化率控制在2.33左右,降低了竖炉磁化焙烧煤气消耗,提高矿石磁化焙烧质量;为保证还原煤气降低用量后的压力和喷出的均匀性,将还原煤气喷出塔的出口面积缩小50%,使矿石能够充分、均匀地完成还原。  相似文献   

7.
吴开基  陈凌  张涛  郭敏  鹿存房 《钢铁》2014,49(3):11-16
 利用焦炉煤气+气基竖炉生产优质海绵铁,可延伸焦化行业产业链,同时可促进中国废钢/海绵铁—电炉短流程发展,改变钢铁行业能源、产品结构。针对典型焦炉煤气,通过基础性试验研究了在气基竖炉工况下,温度、H2O和CO2配比,高温海绵铁载体对焦炉煤气中甲烷改质行为的影响。研究结果表明,提高温度有利于焦炉煤气中甲烷的改质反应,1000℃时改质后有效还原气体体积分数最高可达80%;热态海绵铁对焦炉煤气改质有催化促进作用,可提高CO2参与改质反应比例至84.9%、H2O参与反应比例至100%;CO2配入体积分数2%~6%、H2O配入体积分数4%~10%为促进甲烷改质反应的适宜范围。  相似文献   

8.
采用热力学计算软件HSC对攀枝花钒钛铁精矿内配碳球团竖炉预还原进行了平衡组分、金属化率和还原度的计算;试验研究了内配碳球团不同的竖炉预还原工艺下的金属化率和还原度。研究结果表明:随着反应温度升高,内配碳球团的金属化率和还原度呈现升高的趋势,当温度达到800℃左右,体系中金属化率达到最大值为99.2%;温度升高到1 000℃,还原度达到最大值87.2%;试验得到的金属化率和还原度变化规律与理论相符。在1 200℃时,获得最大金属化率和还原度分别为:85.23%和80.15%。当底部吹入还原性气氛(10%N_2+30%H_2+60%CO)时, 1 200℃达到的最大金属化率和还原度分别为:88.43%和90.42%。因此,在体系中通入还原性气体,还原过程被明显强化。  相似文献   

9.
周渝生  齐渊洪 《宝钢技术》1999,(5):31-34,49
文中报告了900~970℃下含碳球团竖炉直接还原热模拟试验的结果,试验结果表明:含碳4%~8%冷固结含碳球团的冶金性能,可以满足竖炉直接还原的要求;同时发现在含碳球团竖炉直接还原过程中,仍以气体还原为主,但固体碳直接还原的比例随温度升高而增加。并研究了含碳球团竖炉直接还原的规律和工艺参数。  相似文献   

10.
曹朝真  郭培民  赵沛  庞建明 《钢铁》2009,44(4):11-0
 通过CH4 H2 CO H2O CO2 O2煤气体系的热力学模拟计算,对焦炉煤气自重整技术进行了研究。结果表明:高温、高CH4含量以及低压有利于焦炉煤气自重整。在配氧量14%,反应温度850~900 ℃,体系压力为0.3 MPa的条件下,对焦炉煤气进行自重整,则还原气平衡态组分中的氢气的体积分数可由60.0%提高到71.5%,CO体积分数可由8.0%提高到23.1%;气体的还原势为97.2%,还原气体总量约增加33%。  相似文献   

11.
高炉富氢冶炼和富氢气基竖炉是我国氢冶金发展的两大主要方向。高炉富氢冶炼以喷吹焦炉煤气最为典型,与未喷吹焦炉煤气相比,喷吹50 m~3/t HM焦炉煤气,炉料还原速度加快,焦比降低14.43%,碳排放减少8.61%。年产1万t DRI煤制气-气基竖炉直接还原中试基地正在建设,该流程吨钢总能耗为263.67 kgce,吨钢CO_2排放量为829.89 kg,优于传统高炉-转炉流程。综合考虑目前制氢和储氢装备与技术尚待完善、氢气还原吸热降低炉温、氢气比重低、制氢成本高等,我国原燃料条件下更适宜发展富氢气基竖炉,大规模产业化经济制氢与储氢将推动全氢竖炉的进一步发展。  相似文献   

12.
简述了国内外高炉低碳冶炼的最新进展,结合我国国情以及发达国家钢铁工业发展经验,提出我国钢铁工业的发展方向之一应为焦炉煤气深度净化与重整-竖炉氢基还原-直接还原铁电炉冶炼的新工艺.相较传统铁前-转炉长流程工艺,焦炉煤气深度净化与重整-竖炉氢基还原-直接还原铁电炉冶炼流程可实现CO2减排56.7%.  相似文献   

13.
<正>焦炉煤气经过加氧热裂解,可将焦炉煤气中的甲烷热解成还原性气体H2和CO,这样焦炉煤气中的主要成分就变成H2和CO,所占比例约为70%和25%。它可以用于气基竖炉生产海绵铁,可以大大降低炼焦煤和焦炭的消耗,是焦炉煤气  相似文献   

14.
焦炉煤气采用非预转化还原是其应用于竖炉工艺的最佳方案,技术上可行、经济上合理。建立了竖炉物料平衡和热平衡相结合的计算机程序。因CH_4在竖炉内转化耗热,要求采取大循环量和高温还原解决竖炉热平衡。气量较传统工艺增加50%,能耗降低9.6%。实验作出了金属铁催化下的甲烷转化及水煤气反应速度常数:对含CH_4气体在数:对含CH_4气体在金属化球团上的析碳率进行实验研究,得出了相应的动力学式:(CH_4)可实现对DRI碳量的定量控制和调节。实验发现:950℃以下,H_2O的控碳能力强于CO_2。  相似文献   

15.
金明芳  吕遐平  张涛 《世界钢铁》2012,12(3):50-52,72
COREX预还原竖炉还原煤气中CO浓度较高,竖炉内部较大温度范围都存在发生析碳反应的可能性。从竖炉操作压力和温度两个方面,分析了竖炉内不同区域内的析碳行为,同时重点分析了预还原竖炉内析碳反应对金属化率和下降管析碳量的影响。理论分析表明,析碳比例增加1%,竖炉金属化率平均降低3.4%;采用冷煤气作为冷却介质时,析碳量明显增加,此时不宜将下降管温度控制在750℃以下,且反窜煤气比例超过10%时,应及时切换成用N2冷却。  相似文献   

16.
在煤灰熔点高于直接还原铁还原温度200℃的条件下,以直接还原竖炉作为移动颗粒床除尘器为核心技术的3段连续除尘,以铁矿煤球团为直接还原铁原料和移动颗粒床除尘颗粒,粗煤气显热可以直接用于生产直接还原铁。粗煤气显热约占煤炭气化热值的13%,估算联产直接还原铁显热利用效率可达70%以上,与现有的粗煤气废锅发电比,综合热效率提高约2倍,直接还原铁能耗303kg(C)/t.Fe,可以实现温室气体近零排放,减排CO2约1.7t/t.Fe。可以在不减少粗煤气化学热能(H2+CO),联产直接还原铁的同时解决粗煤气的高温除尘与净化问题。  相似文献   

17.
在煤气化直接还原竖炉工艺中,还原煤气的CO体积分数较高,竖炉内部较大温度范围都存在析碳反应发生的可能性。基于竖炉操作压力和温度,分析了竖炉内不同区域的析碳行为,同时考察析碳对炉料温度的影响。理论分析表明,随着压力增加,析碳反应加剧,在竖炉中部的500~700℃范围,析碳反应所处的热力学及动力学条件均较好,发生析碳反应可能性较大,且随着析碳量增加带来的固体温度升高值也较大。  相似文献   

18.
高炉富氧喷吹焦炉煤气对CO_2减排规律研究   总被引:2,自引:0,他引:2  
将高炉分为高温区和固体炉料区两个区域,在物料平衡和热量平衡的基础上,以大型高炉生产数据做支撑,建立了高炉富氧喷吹焦炉煤气数学模型。计算结果表明:高炉富氧喷吹焦炉煤气,焦炉煤气喷吹量每增加50m3,可减少炼铁工序CO2排放量约5%,同时风口理论燃烧温度降低约35℃;如果保持风口理论燃烧温度与现有大型高炉相同,那么随着焦炉煤气喷吹量的增大,炼铁工序CO2排放量要比不考虑风口理论燃烧温度时大,但仍可以显著降低CO2排放量。  相似文献   

19.
王瀚  王静松  彭星 《中国冶金》2021,31(5):19-25
为降低高炉炼铁中固体碳耗、高效利用冶金高温副产煤气,提出高炉富氧喷吹还原性气体工艺流程,建立基于物料平衡与热平衡的高炉数学模型,并修正了理论燃烧温度计算公式。应用该模型分别对传统高炉、炉缸富氧喷吹还原性气体以及炉身喷吹循环煤气的炼铁流程进行技术参数分析。结果表明,炉缸富氧喷吹还原性气体以及炉身喷吹循环煤气的炼铁流程中,当氧气浓度达到50%、炉缸还原性气体喷吹量为267 m3/t时,焦比为291 kg/t,煤比为150 kg/t,直接还原度为0.195,相比传统高炉,燃料比降低109 kg/t,综合能耗降低4.8%。还原性气体温度每升高100 ℃,可多喷吹5.8 m3左右的还原性气体,降低焦比约5.5 kg/t;还原性气体喷吹量对理论燃烧温度影响较大,炉缸每喷吹1 m3/t、1 000 ℃的还原性气体,理论燃烧温度可降低约1.9 ℃。  相似文献   

20.
直接还原铁比较纯净、成分稳定,是电炉炼钢的优质原料。中国焦化行业产生大量焦炉煤气,适宜发展以焦炉煤气为还原气的竖炉直接还原炼铁流程,现有工艺主要有Midrex工艺和HYL-ZR工艺。为了解决Midrex工艺和HYL-ZR工艺所存在的问题,通过流程功能分析,提出气基竖炉直接还原重构优化流程,主要工序包括焦炉煤气压缩、TSA预处理、PSA脱碳、PSA提纯CH4、富氢气加热、竖炉直接还原炼铁等。该流程不仅净化焦炉煤气,而且可分离CH4,使还原气中H2与CO的比例达到8,并省去CH4重整环节,提高炉内直接还原效率。该流程前端与焦化工序连接,后端与电弧炉连接,不仅有利于钢铁联合企业资源优化配置,而且可以生产天然气,提高能源利用效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号