首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
纳米SiO2改性环氧涂层的防腐性能   总被引:1,自引:0,他引:1  
用电化学阻抗谱法(EIS)研究纳米SiO2改性环氧涂层在3.5%NaCl(质量分数)水溶液中的腐蚀规律,结合电容法和重量法分析改性涂层的吸水行为.结果表明,添加纳米SiO2可明显改善涂层的防腐性能,添加质量分数为2%时防腐性能最好.H2O在不同PVC(pigment volume concentration)环氧涂层中传输的起始阶段满足Fick第二扩散定律.纳米SiO2虽可与环氧树脂发生物理化学键合,填充涂层孔隙,但超过临界添加量时纳米粒子团聚作用又使涂层缺陷增多,防腐性能降低.  相似文献   

2.
通过共混法用纳米SiO2对环氧涂层进行改性,采用电化学阻抗谱(EIS)研究浸泡于3.5 mass% NaCl溶液中的涂层/金属电极体系电化学行为;建立了四种等效电路阻抗模型对EIS数据进行拟合,通过分析电化学参数的变化规律表征了体系的腐蚀行为;从Bode图选取了能直观反映涂层保护性能且误差小的高频区参数,研究了涂层防腐...  相似文献   

3.
张哲  严刚  倪福松  贾明子 《表面技术》2014,43(2):18-23,54
目的研究Al2O3纳米粒子环氧复合涂层对钢筋的防护性能。方法制备Al2O3纳米粒子,将其添加至环氧涂料中,并涂覆在工业钢筋表面成膜。通过XRD和SEM对Al2O3进行表征;利用电化学噪声、交流阻抗谱分析技术,对复合涂层在3.5%(质量分数)NaCl介质中对工业钢筋的防护性能进行测试分析。结果制备的氧化铝纳米粒子的粒径平均为75 nm。通过对电化学噪声测试的有效数据进行时域和频域分析,通过交流阻抗谱分析及数据拟合,认为Al2O3纳米粒子添加量为0.1%(以占环氧树脂质量的百分比计)时,涂层对钢筋的防护性能最好。结论向环氧涂层中添加适量的Al2O3纳米粒子,可以明显提升其对钢筋的防护性能。  相似文献   

4.
Ti纳米粒子对环氧涂层防护性能的影响   总被引:1,自引:0,他引:1  
应用电化学阻抗法(EIS)、示扫描量热法(DSC)、X射线光电子谱(XPS)研究了添加Ti纳米粒子对环氧涂层防护性能的影响.结果表明:添加Ti纳米粒子可以提高环氧涂层的防护性能,添加量在0.5%(以w/w计)时最好.这是由于添加Ti纳米粒子虽然可增加涂层孔隙率,但Ti纳米粒子与环氧树脂之间存在的相互作用可改善涂层对腐蚀性介质的屏蔽性能,提高涂层的防护性能.  相似文献   

5.
通过开路电位测量、电化学阻抗谱测试、动电位极化曲线测试、附着力测试等手段,研究了多羟基超分散剂对水性环氧清漆防腐性能的影响。结果表明,在3.5%NaCl溶液中,环氧清漆和含分散剂的环氧清漆的失效历程相同,可分为4个阶段:涂层快速吸水阶段、涂层腐蚀产物生成阶段、稳定腐蚀阶段和腐蚀产物扩散阶段。含分散剂的环氧清漆表现为较强的吸水性,多羟基超分散剂增加了涂层的饱和吸水率,加快了涂层的腐蚀失效。  相似文献   

6.
目的初步探索由聚苯胺/磷酸锌有机-无机复合钝化填料和环氧-聚硅氧烷树脂制备的自修复涂层的修复和防腐性能。方法采用微区交流阻抗技术(LEIS)、扫描电子显微技术(SEM)和电化学阻抗技术(EIS),研究了聚苯胺/磷酸锌/聚硅氧烷复合涂层的防腐性能和在人工损伤部位的修复功能。结果由微区电化学阻抗和电化学阻抗测试可知,环氧-聚硅氧烷清漆具有自修复和优异的耐蚀性能;偶联剂处理的聚苯胺/磷酸锌有机-无机复合钝化填料(HCE),可显著提升环氧-聚硅氧烷涂层的自修复和耐蚀性能。当HCE的添加量为0.3%(以占环氧-聚硅氧烷涂料质量的百分比计)时,涂层的自修复和耐蚀性能最佳,缺陷部位修复后的阻抗值最大达到70 k?,是环氧-聚硅氧烷清漆的9倍。涂层阻抗值随浸泡时间的延长而增加,浸泡3750 h时,涂层阻抗值增至10~(11)?·cm~2。结论当涂层产生缺陷时,一方面聚苯胺/磷酸锌有机-无机复合填料发生氧化还原反应,生成新的氧化膜;另一方面,聚苯胺与环氧-聚硅氧烷树脂发生交联固化反应,在基体缺陷处成膜,提高了涂层的致密性;二者协同作用使HCE3涂层试样具有最佳的耐蚀性能和自修复功能。  相似文献   

7.
《腐蚀科学与防护技术》2004,16(6):415-420,F003
研究报告镁阳极氧化膜微观结构和防护性能的比较张永君 ,严川伟 ,王福会 .2 0 0 4 (1) :1热浸镀镀层厚度的动态控制方程郑 雯 .2 0 0 4 (1) :5添加纳米锌粉环氧涂层腐蚀电化学行为刘 斌 ,李 瑛 ,王福会 .2 0 0 4 (1) :92 5 19铝合金热轧板材晶间腐蚀的研究陈险峰 ,林启权 ,林高用 ,彭大暑 .2 0 0 4 (1) :13X70管线钢在模拟近中性土壤介质中的电化学特征李明星 ,王 荣 ,白真权 .2 0 0 4 (1) :17添加Al粉对有机硅树脂涂层性能的影响王 成 ,江 峰 ,王福会 .2 0 0 4 (1) :2 1化学镀镍磷表面改性Cu -Zn -Al形状记忆合金的腐蚀行为梁成浩 …  相似文献   

8.
锌粉颜料尺寸对有机富锌涂层电化学行为的影响   总被引:2,自引:3,他引:2  
利用电化学阻抗谱(EIS)技术,研究了锌粉颜料平均粒度分别为7μm、3.5μm和500nm的有机富锌涂层的电化学行为.研究表明,在阴极保护阶段,含有纳米尺度锌粉颜料的富锌涂层可对基底钢材提供更有效的电流保护,但锌粉颜料尺寸对富锌涂层阴极保护作用时间的长短没有显著影响;在阻挡保护阶段,含有纳米尺度锌粉颜料的富锌涂层中,锌粉的腐蚀速率较低。涂层具有较大的涂层电阻和较小的涂层电容,发展为具有较强阻挡保护作用的涂层.  相似文献   

9.
利用电化学阻抗谱(EIS)、附着力测试等测试手段对清漆喷砂涂层,带锈清漆涂层以及不同植酸含量的带锈涂层的干湿态附着力和耐腐蚀等性能进行了评价。结果表明,添加植酸明显改善了带锈涂装涂层的防腐蚀性能。植酸的添加提高了涂层的附着力,增强了涂层屏蔽作用。此外,植酸还具有缓蚀作用,减缓了金属界面的腐蚀。综合评定植酸添加量为3%时,带锈涂层防腐蚀性能较好。  相似文献   

10.
制备了不同Zn粉含量的冷镀锌涂层,对不同涂层进行力学性能测试,利用盐雾实验和电化学阻抗谱对涂层的性能进行了表征。结果表明,Zn含量为95.2% (质量分数) 时的涂层耐盐雾性能最佳。涂层的腐蚀产物主要为ZnO和Zn(OH)2。当锌粉含量小于75%时,涂层阻抗值随着时间的延长而减小,涂层的保护作用不足;当锌粉含量大于75%时,涂层阻抗值先减小后增大,Zn作为阳极优先腐蚀,起到牺牲阳极保护阴极的作用。  相似文献   

11.
钛酸酯偶联剂对纳米Ti粉在环氧树脂中分散性的影响   总被引:3,自引:0,他引:3  
研究了几种分散剂对Ti纳米粉在环氧树脂中的均匀分散性.其中JN-114钛酸酯偶联剂可使Ti纳米粉均匀分散.同时,应用EIS交流阻抗测试方法测试了不同JN-114添加量的涂层的阻抗值.添加量在5%(以纳米粉w/w计)时的阻抗值最高,且Ti粉可均匀分散.Ti纳米粉分散均匀可加强Ti纳米粉与环氧树脂之间的相互作用,从而改善涂层耐腐蚀性.  相似文献   

12.
目的 考察NaCl溶液中植酸锌对Q235的缓蚀效果及其复合环氧涂层的防护性能。方法 以植酸钠和乙酸锌为原材料成功制备纳米植酸锌,并通过红外光谱仪(IR)、扫描电子显微镜(SEM)、电子能谱仪(EDS)、透射电子显微镜(TEM)及X射线衍射仪(XRD)对其结构及形貌进行表征。采用开路电位、极化曲线、X射线光电子能谱技术(XPS)及SEM等手段,研究了Q235在含植酸锌浸出物的Na Cl溶液中的腐蚀行为及腐蚀形貌。利用SEM、电化学阻抗谱(EIS)以及盐雾测试等方法,研究了纳米植酸锌在环氧涂层中的分散性及其对环氧涂层防腐蚀性能的影响。结果 SEM和TEM显示合成的植酸锌为球形颗粒,颗粒直径较为均匀,为20~40 nm。开路电位、极化曲线测试显示,纳米植酸锌浸出物可以抑制Q235在1%NaCl溶液中的腐蚀。XPS显示,Q235试样表面明显吸附植酸根成膜。纳米植酸锌在环氧树脂中的分散状态良好,无明显团聚现象。EIS和盐雾测试显示,纳米植酸锌可以增强环氧涂层的防护性能。结论 纳米植酸锌可以用作防锈颜料,且相比于磷酸锌防锈颜料,添加相同量的纳米植酸锌的涂层的防腐效果更佳,其可能和植酸锌的小尺寸、良...  相似文献   

13.
用电化学方法和红外光谱技术研究了1,4-丁炔二醇缓蚀剂在环氧涂料中缓蚀作用.结果表明:缓蚀剂的加入可以明显改变涂层的阻抗,当缓蚀剂加入量小于0.5mass%时,涂层的阻抗随着缓蚀剂量的增多而增大;对所测得的缓蚀涂层的交流阻抗数据进行拟合并结合红外光谱分析认为,在基底和涂层之间生成了一层不完整的聚合物覆盖膜,在此基础上采用电化学技术探讨了此覆盖膜在涂层中的缓蚀机理.  相似文献   

14.
Environment behaviors and degradation mechanisms of two organic epoxy coatings coated on carbon steel sheets in 3.5 wt% NaCl neutral solution were studied by electrochemical impedance measurements and atomic force microscopy (AFM). The results showed that the coating resistance (Rp) of the graphite‐filled epoxy coating tested, which presents the film barrier performance, is higher than those of 6101 epoxy resin for initial seawater immersion, but the coating resistance of the zinc‐rich epoxy coating was lower than that of 6101 epoxy resin. After salt spray tests, zinc‐rich epoxy coating coated on the metal still has good anti‐corrosion performances due to the existence of protection effects called “electrochemical” and “chemical” protection. Those behaviors and degradation mechanisms of two coatings can be explained by a series of measured electrochemical impedance spectroscopy measurements, and two equivalent circuit models were proposed to explain the degradation processes of the two organic coatings.  相似文献   

15.
在醇酸涂料中的纳米TiO2分散性及涂层耐磨性   总被引:2,自引:1,他引:2  
 在制备涂料中,颜料的分散是非常重要的,本文选择了一种非离子型的表面活性剂作为纳米TiO2在醇酸涂料中的分散剂,用激光粒度仪得到了涂料体系中的TiO2的粒度分布曲线.并结合TEM照片观察到了在有分散剂和没有分散剂时,纳米粉TiO2的分散状态.同时比较了含有不同含量TiO2(mass%)及含有普通钛白粉的涂层耐磨性,结果表明,有4%的纳米TiO2涂层耐磨性最好.    相似文献   

16.
SiC颗粒尺寸对镍基复合镀层耐磨性和耐蚀性的影响   总被引:1,自引:0,他引:1  
在正交实验基础上,对比研究微米SiC(平均粒径1.5 μm)和纳米SiC(平均粒径20 nm)增强复合镍基镀层的摩擦磨损行为和耐腐蚀性能.通过TEM、SEM、EDX和XRD等手段研究颗粒分散状态以及复合镀层的表面和截面形貌、成分及相结构.采用球-盘滑动摩擦磨损试验机研究复合镀层的耐磨性.电化学阻抗谱测量在3.5%的NaCl水溶液中进行.结果表明:微米级颗粒增强复合镀层可以获得更高的表面硬度,两种增强复合镀层具有相似的摩擦磨损行为.电化学阻抗谱分析表明:SiC颗粒的加入可以提高镀层的耐腐蚀性,且纳米颗粒复合镀层具有更好的耐蚀性.  相似文献   

17.
目的研制高性能快干型高固体分环氧防腐底漆。方法将低黏度高活性环氧树脂和普通环氧树脂进行复配,得到可用于高固含涂料的树脂基料;通过分子结构优化设计,合成制备了以酚醛胺改性聚酰胺树脂为主体并结合柔性长链改性胺树脂复配的固化剂体系;利用复配的环氧树脂基料、自制的固化剂体系和无铬防锈颜料等组分研制了快干型高固体分环氧底漆。根据国家标准,进行了力学性能(包括柔韧性、耐冲击性和附着力)、耐环境性能(包括耐湿热、耐盐雾性能)和耐液体介质等涂层性能测试;通过考核涂层耐丁酮擦拭100次是否露底,来表征涂层的固化,采用FTIR手段,动态跟踪环氧固化过程。结果新研制的环氧涂料具有优良的力学性能和防腐性能,涂料的固含量73%,表干时间40 min,适用期8 h,耐盐雾和湿热均能达到5000 h,全面性能已达到国外现役先进材料水平,且工艺性能良好。结论以低黏度高活性环氧树脂为基体,采用酚醛与柔性长链二聚酸改性的聚酰胺固化剂,可制备高性能快干高固体分环氧防腐底漆,在飞机的防护底漆领域具有良好的应用前景。  相似文献   

18.
纳米填料对环氧涂料防腐耐磨性能影响的研究   总被引:6,自引:1,他引:5  
环氧树脂由于其本身的附着力强,耐化学药品性和耐磨性也很好,所以被广泛应用于防腐涂料上.但是由于其自身脆性等缺点,在使用中通常需要时其进行改性处理.其中,各种纳米粉体对环氧树脂的改性得到了广泛的关注,对于提高环氧涂料的耐腐蚀性和耐磨性等性能发挥了重要作用.主要综述了纳米粉体在提高环氧树脂涂料的防腐性和耐磨性等方面的研究进展,介绍了纳米粉体分散改性的先进方法和表征手段,对纳米填料应用于重防腐耐磨环氧涂料的发展进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号