首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 801 毫秒
1.
以α-Si3 N4为原料,Y2 O3和MgO为复合烧结助剂,通过无压烧结制备出氮化硅陶瓷。为了优化实验配方和工艺参数,采用正交实验研究了成型压力、保压时间、保温时间、烧结温度、烧结助剂含量以及配比对氮化硅陶瓷气孔率和抗弯强度的影响规律。结果表明,影响氮化硅陶瓷气孔率的主要因素是烧结助剂含量和配比,而影响其抗弯强度的主要因素是烧结助剂配比和烧结温度。经分析得出,最佳工艺参数为成型压力16 MPa,保压时间120 s,保温时间2 h,烧结温度1750℃,烧结助剂含量12wt%,烧结助剂配比1∶1;经最佳工艺烧结后的氮化硅陶瓷,相对密度为94.53%,气孔率为1.09%,抗弯强度为410.73 MPa。  相似文献   

2.
采用低温烧结法制备多孔碳化硅陶瓷,研究了成型压力、烧结温度等对其开气孔率、抗压强度、表面最大孔径和气体渗透率等的影响,通过SEM、EDS等表征其微观形貌和成分等。结果表明:在较低烧结温度850~950℃中烧成时,随着烧成温度的升高,多孔碳化硅陶瓷开气孔率和气体渗透率先增大后减小,体密度先减小后增大,表面最大孔径增加;抗压强度随开气孔率的增大而降低,压缩应力-应变表明多孔陶瓷的压溃分阶逐次进行,通过数次的局部压溃现象(应力台阶)来松弛主裂纹尖端的应力集中;随着成型压力的增加,其最大孔径和气体渗透率减小;在50 MPa成型870℃烧成时,多孔碳化硅陶瓷开气孔率达到38.4%,抗压强度80 MPa,表面最大孔径为12.86μm,气体渗透率达361.82m3/(m2·h·k Pa)。  相似文献   

3.
颜汉军 《山东陶瓷》2007,30(1):19-20
本文研究了氮化硅加入物对石英陶瓷性能的影响。结果表明,氮化硅有助于石英陶瓷的烧结,而对烧结温度无影响。烧成在1150℃~1200℃温度范围内,石英陶瓷的强度、体积密度随氮化硅的添加量增大和烧结温度提高而增大,而石英陶瓷的显气孔率随氮化硅添加量的增大和烧结温度的升高而减小。  相似文献   

4.
研究了氮化硅加入物对石英陶瓷性能的影响。结果表明,氮化硅有助于石英陶瓷的烧结,而对烧结温度无影响。在1150℃ ̄1200℃的温度范围内,添加0.5 ̄1.5%的氮化硅不会引导石英玻璃的析晶。烧成在1150℃ ̄1200℃温度范围内,石英陶瓷的强度、体积密度随氮化硅的添加量增大和烧结温度提高而增大,而石英陶瓷的显气孔率随氮化硅添加量的增大和烧结温度的升高而减小。  相似文献   

5.
氮化硅对注凝成型熔融石英陶瓷性能影响的研究   总被引:1,自引:0,他引:1  
以丙烯酰胺(AM)为有机单体,N,N'-亚甲基丙稀酰胺(MBAM)为交联剂,过硫酸铵(APS)为引发剂,pH=3.5,温度为1190 ℃保温5 h的条件下,采用注凝成型方法制备熔融石英陶瓷;以氮化硅为添加剂,通过XRD、SEM等分析不同氮化硅添加量对熔融石英陶瓷的影响,结果表明,氮化硅促进石英陶瓷的烧结,不会导致方石英出现;试样常温抗折强度、体积密度随氮化硅添加量的增加而增大,而显气孔率随氮化硅添加量的增加而减小.当氮化硅添加量为2%时,试样常温抗折强度为37.13 MPa,体积密度为1.96 g/cm3 ,显气孔率为10%.  相似文献   

6.
碳热还原-常压烧结法制备多孔氮化硅陶瓷   总被引:3,自引:0,他引:3  
采用SiO2和α-Si3N4在氮气中通过碳热还原-常压反应烧结法,原位反应制备了氮化硅多孔陶瓷.由于反应中存在大量的质量损失,烧结的制品为高气孔的材料.通过改变原料中α-Si3N4与SiO2和C粉的相对含量,可以形成具有细小针状结构的β-Si3N4晶粒,以此获得气孔率可控的高性能的多孔氮化硅材料.随着原料中α-Si3N4含量的增大,烧结后,样品的总质量损失逐渐减小,收缩率逐渐降低,气孔率逐渐减小,弯曲强度逐渐增大.当α-Si3N4的质量分数为50%时,碳热还原-常压反应烧结的样品中的β-Si3N4晶粒具有更高的长径比,样品气孔率为68.7%,具有优良的力学性能,弯曲强度达到37.7MPa.  相似文献   

7.
李青  尹育航  刘鸿 《硅酸盐通报》2013,32(7):1379-1383
本文以Al2O3-B2 O3-SiO2系玻璃中加入三元碱制备的陶瓷结合剂为基础,再添加适量碱土金属化合物MgO、ZnO、CaF2和稀土氧化物CeO2添加剂制成陶瓷结合剂,研究冷等静压成型工艺对陶瓷结合剂金刚石磨具性能的影响.结果表明:冷等静压成型压力在100~260 MPa范围内,随着成型压力的增加,试样的体积密度随之增加,当成型压力为220 MPa时,试样的体积密度达到2.34 g/cm3后趋于恒定,较双向压制的试样提高了15.8%;在该压力范围内,随着成型压力的增加,再压制的试样体积收缩率增大,烧结后试样收缩率约在0.18%上下波动,而烧结后试样的抗折强度呈先增加后降低,当成型压力为180 MPa时,试样抗折强度达到93.48 MPa,较双向压制的试样提高了42.5%.经冷等静压处理的陶瓷结合剂金刚石砂轮磨削洛氏硬度为71和85的硬质合金及45#钢后,工件表面粗糙度比双向压制的低,且划痕浅而分布均匀.  相似文献   

8.
加入纳米氮化硅对氮化硅陶瓷性能与结构影响   总被引:2,自引:0,他引:2  
本文以亚微米级氮化硅为起始原料,加入纳米氮化硅来增强基体,添加氧化铝和氧化钇为烧结助剂,等静压成型,采用无压烧结的方式来制备具有优良性能的氮化硅陶瓷。主要研究了纳米氮化硅的分散;纳米氮化硅的加入量对氮化硅陶瓷力学性能的影响;纳米氮化硅的加入量对氮化硅陶瓷使用性能的影响;纳米氮化硅的加入量对氮化硅陶瓷显微结构的影响。研究结果表明:乙醇作为溶剂在分散介质为聚乙二醇的情况下,超声波震荡40分钟时,纳米氮化硅分散效果最好;随纳米氮化硅加入量的增加,显气孔率增加,吸水率增大;加入3wt%的纳米氮化硅时,试样的体积密度最大,抗弯强度、洛氏硬度、断裂韧性最好,具有较理想的显微结构。  相似文献   

9.
本文以平均粒径为2.4 μm微粉SiC颗粒作为多孔陶瓷的主要原料,活性炭和石墨为造孔剂,再添加陶瓷粘结剂和羧甲基纤维素钠(CMC)溶液,采用逐层包覆工艺混料成型.将成型后的胚体在1300℃下烧结出不同陶瓷粘结剂含量(5~ 15wt%)(下同)以及不同成型压力(5~20 MPa)下的多孔陶瓷并研究了其气孔率、收缩率、过滤压降及抗压强度随陶瓷粘结剂含量以及不同成型压力下的变化.研究表明多孔陶瓷的气孔率随着成型压力由12.2MPa增加到48.8 MPa和粘结剂含量5%增加到15%气孔率逐渐降低,其抗压强度分别随着胚体成型压力的增大和粘结剂含量的增加而增加,烧结后胚体收缩率随粘结剂含量有先降低后增加的趋势.在粘结剂含量为10%时,成型压力19.52 MPa下多孔陶瓷的抗压强度和显气孔率都取得了较高的值,分别为31.75 MPa和29.87%,室温下空气流量为0.016 m3·h-1时,过滤压降为21.23 hPa.  相似文献   

10.
10nm钛酸钡粉在7MPa的压力下预成型后再在0.5~6GPa的压力下冷等静压。素坯的相对密度从0.5GPa的49.6%增加到6GPa时的69.2%。素坯在6GPa的压力下冷等静压后在烧结温度为1000℃,保温时间为2h的条件下常压烧结得到的钛酸钡陶瓷的晶粒尺寸约为400nm,相对密度大于99%。没有经过高压的相同的素坯在1150℃,保温时间为2h后得到的钛酸钡陶瓷的晶粒大小约为1200nm。实验结果表明:超高压成型能显著增加素坯的密度;高密度的素坯能降低陶瓷的烧结温度。  相似文献   

11.
林少杰  吴一  邹正光 《耐火材料》2012,46(3):197-199,205
以AlN-Y2O3-La2O3为烧结助剂,在5.5 GPa,1 550℃下对c-BN-β-Si3N4复合材料进行了超高压烧结。借助X射线及扫描电镜对烧结样品进行了分析和观察,探讨了保温时间对产物的组成、形貌及力学性能的影响。结果表明:1)超高压条件下c-BN保持了原有的结构及形貌,发育良好的棒状β-Si3N4晶体均匀分布于烧结体中;α-Si3N4完全转变成β-Si3N4的时间随c-BN含量的增加而延长;烧结体相对密度和弯曲强度均随c-BN含量的增加而降低,硬度则随着c-BN含量的增加而增加,而相对密度的降低在一定程度上抵消了c-BN对硬度提高的贡献。2)c-BN质量分数为50%的复合材料同时具备较高的弯曲强度及硬度,其值分别为830 MPa与29.3 GPa。  相似文献   

12.
以Si粉和BN粉为原料,Fe2O3为烧结助剂,采用反应烧结法于1450℃氮气气氛下制备了Si3N4-BN复合材料. 利用XRD研究了不同烧结制度和BN含量下复合材料的物相组成,利用SEM对材料断面形貌进行了观察,并测定了不同BN含量材料的显气孔率、体积密度和常温抗折强度,同时探讨了Fe2O3的助烧机理和b-Si3N4的形成机理. 研究结果表明,当氮化温度为1450℃、保温时间为45 h时,Si可完全氮化,材料中主晶相仅为Si3N4和BN. 随着BN含量的增加,相对密度和常温抗折强度下降,b-Si3N4含量增多. 当BN含量为30%时,其相对密度为73.3%,抗折强度可达52.5 MPa,同时b/a相比为3.4.  相似文献   

13.
采用GPS烧结HIP处理两步烧结Si3N4基复合陶瓷材料,在GPS烧结后使试件表面气孔闭合形成自身包套,而后通过HIP处理可以明显提高烧结体的密度,可以获得抗弯强度〉720MPa,断裂韧性KIC〉7.8MPa.m^1/2的高性能Si3N4基复合陶瓷烧结体。而GPS烧结所获得的由β-Si3N4晶粒组成的网状显微结构对烧结体的性能是十分有益的.  相似文献   

14.
以Y2O3-Al2O3-La2O3体系作烧结助剂,在5.4~5.7GPa、1620-1770K的高温高压条件下进行了α-Si3N4与γ-Si3N4、α-Si3N4粉体的烧结研究,并探讨了烧结温度及压力对烧结体性能的影响。实验结果表明:α-Si3N4、γ-Si3N4完全相变为β-Si3N4;在相同的烧结条件下,α-SigN4比γ-Si3N4、α-Si3N4混合粉体烧结试样的相对密度、维氏硬度高。α-Si3N4与γ-Si3N4、α-Si3N4混合粉体烧结试样的最高相对密度与维氏硬度分别为98.78%、21.87GPa和98.71%、21.76GPa。烧结体由相互交错的长柱状β—Si3N4晶粒组成.显微结构均匀。  相似文献   

15.
AlPO4-Si3N4溶胶-凝胶涂层对氮化物复合材料表面改性的研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法,对精加工的氮化物复合材料进行AlPO4-Si3N4涂层处理后,表面非常致密,可防止基体因长期放置而吸潮。由于AlPO4-Si3N4溶胶-凝胶有效地弥合基体表面的微裂纹,且浸入到基体内部约34μm深,与基体形成交叉咬合,使材料整体性能增加。材料表面改性实验表明,Al-PO4-Si3N4溶胶-凝胶涂层处理后,材料密度增加,表面气孔率降低,强度由原来的60MPa增加为85MPa,断裂韧性由1.1MPam1/2增加为1.9MPam1/2。  相似文献   

16.
Hot isostatically pressed silicon nitride was produced by densifying Si3N4 powder compacts and reaction-bonded Si3N4 (RBSN) parts with yttria as a sintering additive. The microstructure was analyzed using scanning electron microscopy, X-ray diffraction, and density measurements. The influence of the microstructure on fracture strength, creep, and oxidation behavior was investigated. It is assumed that the higher amount of oxygen in the Si3N4 starting powder compared with the RBSN starting material leads to an increased amount of liquid phase during densification. This results in grain growth and in a larger amount of grain boundary phase in the hot isostatically pressed material. Compared with the hot isostatically pressed RBSN samples therefore, strength decreases whereas the creep rate and the weight gain during oxidation increase.  相似文献   

17.
以Si粉和Al2O3空心球为原料,采用反应烧结后高温烧结法制备了多孔β-sialon/Si3N4陶瓷。X射线衍射结果表明:在0.25MPa的氮气压力下于1300℃反应烧结2h后在0.25MPa的氮气压力下1700℃及1750℃高温烧结2h,制备的样品的组成为β-sialon(Si6-zAlzOzN8-z,z=3)及β-Si3N4,随着烧结温度由1700℃升高至1750℃,β-sialon的相对质量分数由29.9%增加至56.8%。场发射扫描电镜观察结果表明:1750℃高温烧结样品的显微结构由大孔β-sialon及疏松的β-Si3N4基体组成。1750℃高温烧结后,样品的气孔率为28%,抗弯强度为92.5MPa。  相似文献   

18.
采用常压烧结工艺制备了Si3N4-Y2O3-La2O3陶瓷,并对Si3N4陶瓷的力学性能、相组成和显微组织进行了分析和讨论。结果表明:添加4%Y2O3~4%La2O3的复合稀土氧化物后,Si3N4陶瓷呈长柱状的β-Si3N4晶粒,抗弯强度为960MPa,断裂韧性为7.5MPa.m1/2,具有较好的力学性能。  相似文献   

19.
以微米级Si3N4和h-BN粉末为原料,CaF2–Al2O3–Y2O3为烧结助剂,采用常压烧结工艺制备了BN体积含量为25%的Si3N4/BN复相陶瓷。研究了CaF2添加量对Si3N4/BN复相陶瓷材料力学性能的影响,并通过X射线衍射和场发射扫描电镜分析了复相陶瓷的物相组成和显微组织。结果表明:随着CaF2添加量增加,制备的Si3N4/BN复相陶瓷材料气孔率逐渐增大,收缩率变小,相对密度减小。添加量为2%(质量分数)时,Si3N4/BN复相陶瓷的室温抗弯强度达145.5MPa。添加适量的CaF2可在Si3N4/BN复相陶瓷材料常压烧结过程中较大程度地破坏h-BN的卡片房式结构,将微米级的h-BN颗粒变成纳米级颗粒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号