首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The role of proteinases in renal proximal tubule (RPT) cellular death was examined using specific inhibitors of proteinases. Rabbit RPT suspensions were incubated with antimycin A for 1 h or tetrafluoroethyl-L-cysteine (TFEC) for 4 h in the absence or presence of the specific cysteine proteinase inhibitor L-trans-epoxysuccinyl-leucylamido (4-guanidino)butane (E-64), the serine proteinase inhibitors N-p-tosyl-L-lysine chloromethyl ketone (TLCK) or 3,4-dichloroisocoumarin (DCS), the serine and cysteine proteinase inhibitors leupeptin or antipain, or the aspartic proteinase inhibitor pepstatin. E-64 and pepstatin decreased lactate dehydrogenase (LDH) release, a marker of cell death, from RPT exposed either to antimycin A or TFEC. TLCK, DCS, leupeptin, or antipain did not decrease antimycin A- or TFEC-induced cell death. Bromohydroquinone- or t-butylhydroperoxide-induced cell death was not decreased by any of the proteinase inhibitors. Loss of lysosomal membrane potential, indicated by neutral red release, occurred prior to the onset of antimycin A-induced cell death. Extensive inhibition of lysosomal cathepsins B and L by E-64 was correlated with cytoprotection. However, E-64 was only protective after some cell death had occurred. These results suggest that lysosomal cysteine and aspartic proteinases, but not serine proteinases, play a role in RPT cell death induced by antimycin A or TFEC. The observation that E-64 was only protective after some cell death had occurred suggests that lysosomal cathepsins are released from dying cells and subsequently attack the remaining viable cells.  相似文献   

2.
Free fatty acids (FFA) and lysophospholipids accumulate during hypoxia (H) in rat proximal tubular epithelial cells partly as a result of increased phospholipase A2 (PLA2) activity. The role of FFA in mediating hypoxic injury and modulating PLA2 activity is not clear. In the present study, the effect of several FFA including arachidonic acid (AA, 20:4) on hypoxia-induced injury and PLA2 activity was assessed in freshly isolated rat proximal tubules. Hypoxia (H) was induced in the presence of either an unsaturated free fatty acid (uFFA) [AA or linoleic acid (LA, 18:2)] or a saturated FFA (sFFA) [palmitic (PA, 16:0) or myristic acid (MA, 14:0)]. Cell membrane injury was assessed by measuring lactate dehydrogenase release (LDH). AA markedly reduced LDH release during hypoxia in a dose dependent manner, while sFFA had no protective effect. LA showed similar protection to that observed with AA. AA did not affect buffer calcium concentration, buffer pH, intracellular pH or intracellular calcium concentration. Neither inhibiting the cyclooxygenase pathway with indomethacin, nor the lipoxygenase pathway with nordihydroguaiaretic acid (NDGA) had any effect on the AA observed cytoprotection. In vitro PLA2 activity in the control tubular extracts was compared to that following addition of AA or PA. PLA2 activity decreased significantly with AA but not with PA in a dose dependent manner. These data suggest that: (1) AA protects against hypoxic injury in rat proximal tubules. (2) This cytoprotection is not specific for AA and other uFFA have a similar effect. (3) AA significantly inhibits PLA2 activity, (4) AA induced cytoprotection may be related to a negative feedback inhibition of PLA2 activity.  相似文献   

3.
Almost 40 years ago, it was reported that cattle-feed which had been extracted with hot trichloroethylene and then fed to calves produced renal injury and a fatal aplastic anaemia. The toxic factor was subsequently identified as S-(1,2-dichlorovinyl)-L-cysteine (DCVC). These original findings have been confirmed, a single intravenous dose of DCVC at 4 mg/kg, or 0.4 mg/kg intravenously per day administered for 10 days to calves produced aplastic anaemia, and renal injury after a single dose of 4 mg/kg. The toxicity to calves of a number of other haloalkene cysteine conjugates has been examined to ascertain whether, like DCVC, they produce bone marrow and renal injury. Intravenous administration of the N-acetyl cysteine conjugate of DCVC produced renal but not bone marrow injury at a molar equivalent dose to DCVC, indicating that the calf can deacetylate the mercapturic acid and further that sufficient chemical had reached the kidney to be a substrate for the enzyme cysteine conjugate beta-lyase. However, intravenous administration of the alpha-methyl analogue of DCVC, which cannot undergo metabolism via the enzyme cysteine conjugate beta-lyase, was without toxicity at doses about five-fold higher than DCVC. These latter findings provide strong evidence that metabolism of DCVC via the enzyme beta-lyase is necessary for bone marrow and renal injury to occur. The cysteine conjugates of perchloroethylene and hexachloro-1,3-butadiene(HCBD) when given intravenously to calves at molar equivalent doses to DCVC, or above, did not produce either bone marrow or renal injury. In contrast, intravenous administration of the cysteine conjugate of tetrafluoroethylene (TFEC) produced severe renal tubular injury in calves without affecting the bone marrow. In vitro studies with these haloalkene cysteine conjugates showed, like DCVC, that they were good substrates for calf renal cysteine conjugate beta-lyase and toxic to renal cells as judged by their ability to reduce organic anion and cation transport by slices of calf renal cortex and inhibit the renal enzyme glutathione reductase. Calves were also dosed either orally or intravenously with HCBD to assess its toxicity. HCBD at higher molar equivalent doses than DCVC produced mid-zonal necrosis in the liver, renal tubular necrosis but no bone marrow injury in calves. The key findings emerging from these studies are (1) that none of the other cysteine conjugates, at molar equivalent doses to DCVC and above, produce bone marrow injury in calves, (2) TFEC produced only renal injury, suggesting that sufficient of the other conjugates had not reached the kidney for metabolism by beta-lyase to produce cytotoxicity and (3) that HCBD itself is more toxic than its cysteine or mercapturic acid conjugate, suggesting that pharmaco-kinetics and disposition are important factors in determining the toxicity of these conjugates to calves. Further studies are needed to understand the basis for the selective toxicity of DCVC to the bone marrow of calves.  相似文献   

4.
High-affinity NMDA receptor glycine recognition site antagonists protect brain tissue from ischemic damage. The neuroprotective effect of 5-nitro-6,7-dichloro-2,3-quinoxalinedione (ACEA 1021), a selective NMDA receptor antagonist with nanomolar affinity for the glycine binding site, was examined in rat cortical mixed neuronal/glial cultures. ACEA 1021 alone did not alter spontaneous lactate dehydrogenase (LDH) release. Treatment with ACEA 1021 (0.1-10 microM) before 500 microM glutamate, 30 microM NMDA, or 300 microM kainate exposure was found to reduce LDH release in a concentration-dependent fashion. These effects were altered by adding glycine to the medium. Glycine (1 mM) partially reversed the effect of ACEA 1021 on kainate cytotoxicity. Glycine (100 microM-1 mM) completely blocked the effects of ACEA 1021 on glutamate and NMDA cytotoxicity. The glycine concentration that produced a half-maximal potentiation of excitotoxin-induced LDH release in the presence of 1.0 microM ACEA 1021 was similar for glutamate and NMDA (18 +/- 3 and 29 +/- 9 microM, respectively). ACEA 1021 also reduced kainate toxicity in cultures treated with MK-801. The effects of glycine and ACEA 1021 on glutamate-induced LDH release were consistent with a model of simple competitive interaction for the strychnine-insensitive NMDA receptor glycine recognition site, although nonspecific effects at the kainate receptor may be of lesser importance.  相似文献   

5.
Expression of the glycine receptor was investigated in membranes prepared from primary cultures of mouse cerebellar granule cells and postnatal mouse cerebellum using the antagonist [3H]strychnine for ligand binding. Scatchard analysis of the binding data obtained from P17 cerebellum showed a single population of binding sites (K(D) approximately 6 nM) and [3H]strychnine binding to membranes prepared from cultured neurons and P17 cerebellum was found to have the same sensitivity to the glycinergic agonists glycine, beta-alanine and taurine. The development of [3H]strychnine binding sites in cultured cerebellar granule cells and cerebellum showed opposing profiles. [3H]strychnine binding to primary cultures increased significantly during the culture period whereas during development in vivo the number of binding sites decreased over time and was hardly detectable in the adult cerebellum. Release of preloaded D-[3H]aspartate evoked by 40 mM K+ from granule cells cultured for seven days was inhibited by glycine by about 50%. Beginning after seven days in culture the ability of glycine to inhibit transmitter release declined to no inhibition after 17 days in culture. Experiments with the non-competitive antagonist, picrotoxinin, showed no blocking effect of 150 microM picrotoxinin on the glycine-induced inhibition of transmitter release. This contrasted with the inhibitory effect of 100 microM picrotoxinin in whole-cell patch-clamp recordings on responses to 500 microM glycine (56% block). Furthermore, it was demonstrated that the amplitude of the glycine activated peak current had the same size after six to seven days and after 16-17 days in culture. Northern blot analysis, and co-injection of messenger RNA plus antisense oligonucleotides into Xenopus oocytes revealed glycine receptor alpha2 and beta messenger RNAs in the cultured granule cells. These findings suggest that granule cells in culture express glycine receptor isoforms containing alpha2 picrotoxinin-sensitive and alpha2/beta picrotoxinin-insensitive receptors.  相似文献   

6.
Ethanol disrupts signal transduction mediated by a variety of G-protein coupled receptors. We examined the effects of ethanol on arachidonic acid release mediated by muscarinic acetylcholine receptors. Chinese hamster ovary (CHO) cells transfected with the different subtypes of human muscarinic receptors (M1 to M5) were incubated with [3H]arachidonic acid ([3H]AA) for 18 hr, washed, and exposed to the cholinergic agonist carbamylcholine for 15 min. Carbamylcholine induced [3H]AA release from CHO cells expressing M1, M3, or M5, but not M2 or M4, muscarinic receptors. Dose response curves revealed that carbamylcholine stimulated [3H]AA release by up to 12-fold with an ECo of approximately 0.4 microM; maximal responses were obtained with 10 microM carbamylcholine. Exposure of M1-, M3-, or M5-expressing cells to ethanol for 5 min before stimulating with carbamylcholine reduced [3H]AA release by 40 to 65%; 50% of the maximal inhibition was obtained with an ethanol concentration of 30 to 50 mM. Ethanol did not affect basal [3H]AA release measured in the absence of carbamylcholine. Dose response curves suggest that ethanol acts as a noncompetitive inhibitor of muscarinic receptor-induced [3H]AA release insofar as maximal [3H]AA release was depressed in the presence of ethanol with no apparent change in the EC50 for stimulation by carbamylcholine. Exposure of CHO cells to 38 mM ethanol for 48 hr increased [3H]AA release induced by carbamylcholine without affecting basal [3H]AA release or altering the EC50 for carbamylcholine. These results indicate that ethanol acutely inhibits muscarinic receptor signaling through the arachidonic acid pathway in a noncompetitive manner, but chronically enhances muscarinic signaling through the same pathway.  相似文献   

7.
Stimulation in the nucleus raphe magnus (NRM) inhibits transmission of nociceptive information within the spinal cord through activation of bulbospinal pathways. This study used microdialysis in combination with high pressure liquid chromatography to measure the release of serotonin (5HT) and several amino acids, including glutamate, aspartate and glycine, from the lumbar dorsal horn during electrical stimulation within the NRM in the alpha-chloralose anesthetized cat. Observed release of putative neurotransmitters was correlated with inhibition of nociceptive projection neurons recorded from sites within 800 microns rostral or caudal to the dialysis fiber. NRM stimulus parameters considered to preferentially activate myelinated fibers caused inhibition of nociceptive evoked activity, and increased the release of excitatory amino acids and glycine within the spinal cord, with no detectable release of 5HT. When pulse widths were lengthened and unmyelinated fibers were also activated, increases in 5HT in the spinal dialysate were observed as well. Strychnine administered through the dialysis fiber (0.02-1 mM) antagonized NRM-induced inhibition when 5HT release was not detected. Inhibition produced by stimulation that increased 5HT concentrations was relatively strychnine resistant. These results point to a raphe-spinal inhibitory pathway that is not dependent on 5HT, the activation of which results in the spinal release of glycine.  相似文献   

8.
We previously reported that corymine, an alkaloid extracted from the leaves of Hunteria zeylanica native to Thailand, inhibited glycine-induced chloride current using a receptor expression model of Xenopus oocytes. In this study, we investigated the mechanism underlying the inhibitory action of this alkaloid on glycine current using the same model. Corymine inhibited glycine current in a noncompetitive fashion. Co-application with strychnine, a competitive glycine receptor antagonist, or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), a Cl- channel blocker, corymine decreased the ED50 value of strychnine, but did not change that of DIDS. Moreover, the inhibitory effects of corymine and either strychnine or DIDS were additive. The desensitization phase of glycine current showed two exponentials and corymine preferentially inhibited the fast component, whereas strychnine affected both of them to the same extent and DIDS preferentially inhibited the slow component. When these drugs were applied repeatedly, the inhibitory effects of corymine and strychnine were not use-dependent and reversible, while the effect of DIDS was use-dependent and irreversible. The inhibitory effect of corymine on gamma-aminobutyric acid (GABA) current was less potent than the effect on glycine current, while this alkaloid failed to affect acetylcholine and serotonin currents. These results demonstrate that corymine inhibits glycine-gated CI- channels by interacting with the site different from that of DIDS.  相似文献   

9.
The effect of a novel flavonoid, venoruton (a mixture of mono-, di-, tri- and tetrahydroxyethylrutosides) has been investigated in healthy rat lenses and compared with diabetic cataract modelled in vitro. One mM venoruton was added to medium simulating healthy and diabetic conditions for the incubated lenses; damage was followed by either stereoscopic photography of the lenses under a Cooperative Cataract Research Group operating microscope or with our recently developed method: the leakage of lactate dehydrogenase (LDH) into the lens culture media. The increased LDH activity in the medium and observable development of the opacity were correlated with cell damage, which has been found to be associated with globular degeneration and cataract formation. The extent of opacification and LDH release is reduced if 1 mM venoruton is included in the medium. The protective effect may be related to antioxidant activity against reactive oxygen species: decreased luminol luminescence was shown after venoruton addition to either superoxide-generating hypoxanthine plus xanthine oxidase, or hydrogen peroxide.  相似文献   

10.
Effects of renal cytoprotective agents on erythrocyte membrane stability   总被引:1,自引:0,他引:1  
To elucidate potential mechanisms of ischemic renal injury, investigators often use drugs that interfere with specific pathological pathways and study their protective efficacy in in vitro models of ischemia, such as isolated renal proximal tubules subjected to hypoxia. However, the protective effects of certain drugs may depend on non-specific membrane-stabilizing properties. We have studied the effects of several drugs on membrane integrity using osmotic lysis of erythrocytes as a model system. Freshly isolated rabbit erythrocytes were subjected to a hypotonic shock, and the protective effects of various calcium channel blockers, phospholipase inhibitors, free fatty acids, the NO-synthase inhibitor L-NAME, the amino acid glycine and its receptor-analogue strychnine, and two chloride channel blockers were examined. Most agents protected erythrocytes against hypotonic hemolysis when added to the medium in the same concentration range as used in suspensions of hypoxic proximal tubules. Only the protective agents that proposedly act via a blockade of chloride influx (glycine, strychnine and the chloride channel blockers), did not attenuate hypotonic hemolysis. The erythrocyte hemolysis assay may provide an easy and rapid method to screen for non-specific membrane-stabilizing effects of potentially cytoprotective agents.  相似文献   

11.
The responses of acutely dissociated medial preoptic neurons to application of GABA, and glycine were studied using the perforated-patch whole-cell recording technique under voltage-clamp conditions. GABA, at a concentration of 1 mM, evoked outward currents in all cells (n = 33) when studied at potentials positive to -80 mV. The I-V relation was roughly linear. The currents evoked by GABA were partially blocked by 25-75 microM picrotoxin and were also partially or completely blocked by 100-200 microM bicuculline. Glycine, at a concentration of 1 mM, did also evoke outward currents in all cells (n = 12) when studied at potentials positive to -75 mV. The I-V relation was roughly linear. The currents evoked by glycine were largely blocked by 1 microM strychnine. In conclusion, the present work demonstrates that neurons from the medial preoptic nucleus of rat directly respond to the inhibitory transmitters GABA and glycine with currents that can be attributed to GABAA receptors and glycine receptors respectively.  相似文献   

12.
The current study was undertaken to examine the effects of dithiothreitol (DDT), a sulfhydryl-reducing agent and heavy metal chelator, on the course of heavy metal-induced acute renal failure in the rat. Groups of rats in metabolic cages received uranyl nitrate (UN) alone, UN plus DTT, mercuric chloride (HgCl2) alone, and HgCl2 plus DTT. UN injected alone produced azotemia, decreased creatinine clearance, and rising fractional sodium excretion over the 48 hr of study. These effects of UN on renal function were not observed when DTT was administered 30 min after UN injection. Qualitatively similar results were obtained with HgCl2-induced acute renal failure. Groups of rats were killed at 6 hr after UN plus DTT, HgCl2 alone, or HgCl2 plus DTT; and determinations of plasma renin activity (PRA) and renin activities of the superficial and deep juxtaglomerular apparatus (JGA) were performed. PRA's and JGA renins were increased in animals receiving either UN or HgCl2 alone, but not in the rats receiving both DTT and UN or HgCl2. The effect of DTT on distribution of 203Hg was also examined. Treatment with DTT did not alter the renal accumulation of 203Hg, suggesting that this agent does not act by limiting renal exposure to the heavy metals. Thus, DTT ameliorates the course of heavy metal-induced ARF, and this effect is associated with prevention of heavy metal-induced alterations in sodium excretion and renin-angiotensin system activity.  相似文献   

13.
Adaptive cytoprotection in the gastric mucosa could be induced by exposure to low concentrations of noxious agents. However, experimental results reported so far were based on macroscopic studies. We aimed to investigate the phenomenon of gastric adaptive cytoprotection of mild irritants and its correlation with intramucosal mucus at the histological level. It was found that histological damage induced by ethanol had a negative correlation with the length of the mucus-secreting layer in the gastric mucosa. Mild irritants such as 20% ethanol and 5% NaCl preserved the 100% ethanol-induced intramucosal mucus depletion, but only the former agent demonstrated a cytoprotective effect against the histological damage, indicating that preservation of intramucosal mucus may not necessarily play a permissive role in adaptive cytoprotection. The capsaicin-sensitive sensory afferent neurons, sensory chemoreceptors, muscarinic receptors, alpha2-adrenoceptors and peripheral dopamine D2-receptors were found to be the components of the autonomic nervous system involved in the cytoprotective processes of 20% ethanol. Endogenous mediators including nitric oxide, prostaglandins, and possibly nonprotein sulfhydryl compounds also seemed to participate in such protection. Nevertheless, 0.3 M HCl did not show any effect either on mucosal damage or depletion of intramucosal mucus induced by absolute ethanol. These findings suggest that only 20% ethanol shows histological cytoprotection, which would involve various components of the autonomic nervous system and endogenous mediators. Furthermore, this investigation also implies a new perspective: that in order to study a true adaptive cytoprotection, histological examination of the gastric mucosa should be performed.  相似文献   

14.
Repeated applications of elevated K+ (50 or 75 mM) in cerebral cortical cup superfusates was used to evoke an efflux of gamma-aminobutyric acid (GABA), glutamate, aspartate, glycine, adenosine, and inosine from the in vivo rat cerebral cortex. K+ (50 mM) significantly elevated GABA levels in cup superfusates but had little effect on the efflux of glutamate, aspartate, glycine, adenosine, or inosine. K+ (75 mM) significantly enhanced the efflux of GABA, aspartate, adenosine, and inosine and caused nonsignificant increases in glutamate and glycine efflux. The adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA), applied in cup superfusates at a concentration of 10(-10) M had no effect on either basal or K(+)-evoked release of any of the amino acids or purines measured. At 10(-6) M CPA significantly enhanced aspartate release, and depressed GABA efflux. The selective A2 adenosine receptor agonist 2-p(2-carboxyethyl) phenethylamino-5'-N-ethyl-carboxamidoadenosine (CGS 21680) (10(-8) M) was without effect on either basal, or K(+)-evoked, efflux of amino acids or purines. The enhancement of aspartate (an excitotoxic amino acid) efflux by higher concentrations of CPA is likely due to activation of adenosine A2b receptors. This observation may be of relevance when selecting adenosinergic agents to treat ischemic or traumatic brain injuries. Overall, the results suggest that effects of adenosine receptor agonists on K(+)-evoked efflux of transmitter amino acids from the in vivo rat cerebral cortex may not be comparable to those observed with in vitro preparations.  相似文献   

15.
Oxidants are important human toxicants. Increased intracellular free Ca2+ may be critical for oxidant toxicity, but this mechanism remains controversial. Furthermore, oxidants damage the endoplasmic reticulum (ER) and release ER Ca2+, but the role of the ER in oxidant toxicity and Ca2+ regulation during toxicity is also unclear. tert-Butylhydroperoxide (TBHP), a prototypical organic oxidant, causes oxidative stress and an increase in intracellular free Ca2+. Therefore, we addressed the mechanism of oxidant-induced cell death and investigated the role of ER stress proteins in Ca2+ regulation and cytoprotection after treating renal epithelial cells with TBHP. Prior ER stress induces expression of the ER stress proteins Grp78, Grp94, and calreticulin and rendered cells resistant to cell death caused by a subsequent TBHP challenge. Expressing antisense RNA targeted to grp78 prevents grp78 induction sensitized cells to TBHP and disrupted their ability to develop cellular tolerance. In addition, overexpressing calreticulin, another ER chaperone and Ca2+-binding protein, also protected cells against TBHP. Interestingly, neither prior ER stress nor calreticulin expression prevented lipid peroxidation, but both blocked the rise in intracellular free Ca2+ after TBHP treatment. Loading cells with EGTA, even after peroxidation had already occurred, also prevented TBHP-induced cell death, indicating that buffering intracellular Ca2+ prevents cell killing. Thus, Ca2+ plays an important role in TBHP-induced cell death in these cells, and the ER is an important regulator of cellular Ca2+ homeostasis during oxidative stress. Given the importance of oxidants in human disease, it would appear that the role of ER stress proteins in protection from oxidant damage warrants further consideration.  相似文献   

16.
Recent studies have shown that tetrafluoroethylene is a renal and hepatic carcinogen in the rat. In this study, we have examined the ability of a single i.p. dose of 1,1,2,2-tetrafluoroethyl-L-cysteine (TFEC), a major metabolite of tetrafluoroethylene, to produce hepatic and renal injury in male and female rats. We have also examined the effect of blocking the renal organic anion transport system with probenecid and of inhibiting the activity of cysteine conjugate beta-lyase with aminooxyacetic acid on the extent of renal injury produced by TFEC. Doses of > or = 12.5 mg/kg TFEC produced renal tubular necrosis to the pars recta of the proximal tubules within 24 h in both male and female rats. This was associated with an increased kidney to body weight ratio and plasma urea at doses of > or = 25 mg/kg. No consistent evidence of liver injury was seen at doses up to 50 mg/kg TFEC in rats of either sex, although occasional vacuolation of hepatocytes and a small dose-related increase in liver to body weight ratio was observed. Prior treatment of female rats with probenecid completely prevented the renal injury produced by either 25 or 50 mg/kg TFEC as judged by plasma urea and histopathology. However, prior treatment of female rats with aminooxyacetic acid afforded no protection against the nephrotoxicity produced by either TFEC or the cysteine conjugate of hexachloro-1,3-butadiene. Thus no major sex difference in nephrotoxicity in the rat was seen with TFEC, while accumulation of TFEC, or its N-acetyl derived metabolite, into renal proximal tubular cells via a probenecid sensitive transport system appears to be a key event in the mechanism of nephrotoxicity. The lack of protection observed with the cysteine conjugate beta-lyase inhibitor, aminooxyacetic acid, may reflect the inability to completely inhibit the mitochondrial form of this enzyme and thereby prevent the formation of the reactive metabolite. Our acute studies provide no insight concerning the liver carcinogenicity of tetrafluoroethylene.  相似文献   

17.
The blockade of spinal glycine receptors with intrathecal strychnine produces a reversible allodynia-like state in the rat. Thus, hair deflection, in the presence of intrathecal strychnine, induces cardiovascular and motor withdrawal responses comparable with those evoked by noxious thermal, mechanical, or chemical stimulation in the absence of strychnine. In the present study, we mapped the cutaneous sites of abnormal sensitivity to hair deflection throughout the strychnine time course to investigate the segmental distribution of strychnine-induced allodynia. The ability of intrathecal glycine and the glycine derivative betaine to reverse strychnine-induced allodynia was also determined using dose-response analysis. Following intrathecal strychnine (40 micrograms), stroking the legs, flanks, lower back, and tail with a cotton-tipped applicator evoked a pronounced increase in mean arterial pressure, tachycardia, and an abrupt motor withdrawal response in urethane-anesthetized rats. These abnormal responses were only evoked by hair deflection at discrete sites, corresponding to the cutaneous dermatomes innervated by spinal segments near the site of strychnine injection. In rats with intrathecal catheters lying laterally in the subarachnoid space, allodynic sites were observed unilaterally on the ipsilateral side of intrathecal strychnine injection. Recovery from strychnine was complete by 30 min in all affected dermatomes. The cardiovascular and motor withdrawal responses to hair deflection were dose dependently inhibited by intrathecal glycine and intrathecal betaine. The ED50 (95% confidence interval) for intrathecal glycine was 609 (429-865) micrograms for the heart rate response, 694 (548-878) micrograms for the pressor response, and 549 (458-658) micrograms for the motor withdrawal response. The corresponding values for intrathecal betaine were 981 (509-1889), 1045 (740-1476), and 1083 (843-1391) micrograms, respectively. There was no difference in the effect of betaine on sensory-evoked cardiovascular and motor responses. Cortical electroencephalographic activity was not affected by intrathecal glycine or betaine, consistent with a spinal locus of action in reversing strychnine-induced allodynia. These results support the hypothesis that removal of spinal glycinergic modulation from low threshold afferent input with intrathecal strychnine results in segmentally localized, tactile-evoked allodynia.  相似文献   

18.
Lactate dehydrogenase (LDH) leaks from the perfused rat kidney under the artificial conditions of a Ca(2+)-paradox protocol, namely Ca(2+)-repletion following a 20 minute period of Ca(2+)-depletion. LDH leakage was markedly suppressed by perfusion at 25 degrees C or with 0.1 mM dibucaine or 2 mM lidocaine. Lidocaine inhibited leakage only during Ca(2+)-depletion. Lowering the perfusion rate significantly reduced LDH escape. No LDH loss occurred if the osmotic pressure of the perfusion fluid was raised by 420 mOsm during either Ca(2+)-depletion or Ca(2+)-repletion. Amiloride (2 mM) significantly reduced LDH leakage to 43%. Reduction of the pH of the perfusion fluid to 6.8 significantly inhibited LDH loss, and at pH 6.4 this leakage was almost completely suppressed. LDH loss was equally suppressed at pH 6.4 only during Ca(2+)-depletion, whereas pH 6.4 was markedly less effective when perfused only during Ca(2+)-repletion. Ouabain (5 x 10(-6) M) had only a limited effect in exacerbating LDH leakage. Raising [K+]o significantly protected against LDH leakage, which fell to 36% at 16 mM [K+]. These features correspond with the Ca(2+)-paradox of the perfused rat heart an it is suggested that: (i) a Ca(2+)-paradox can be produced in the rat kidney; (ii) a similar mechanism governs the release of cytosolic proteins in these two preparations; and (iii) the damage mechanism of the plasmalemma is a transmembrane oxidoreductase-diaphorase molecular complex which generates H+ when activated by Ca(2+)-depletion.  相似文献   

19.
Central control of cochlear function is mediated by the cholinergic (medial) efferent system and both muscarinic and nicotinic acetylcholine receptors are thought to be present on outer hair cells. All the physiological effects of acetylcholine in the cochlea are blocked by strychnine and we therefore investigated whether strychnine interacts with muscarinic receptors in the cochlea. The effects of strychnine on both (3H)-quinuclidinyl benzylate binding and atropine sensitive carbachol-induced (3H)-inositol phosphate formation were examined. Strychnine (1 to 50 microM) has no effect on either quinuclidinyl benzylate binding or carbachol (1 mM)-induced inositol phosphate synthesis. Moreover, strychnine does not change basal inositol phosphate metabolism. These data indicate that muscarinic receptors are not sensitive to strychnine at concentrations which are known to block the effects of acetylcholine on outer hair cells.  相似文献   

20.
Injury to the alveolar region is a hallmark of the adult respiratory distress syndrome (ARDS) whereas injury to the epithelium of the conducting airways is a characteristic of asthma. Reactive oxygen species have been implicated as mediators of lung injury in both of these conditions. We have investigated the relationship between intracellular nonprotein thiols (NPSH), and the release of the cytosolic enzyme lactate dehydrogenase (LDH), as an index of cell injury, following treatment of the human alveolar type II-like epithelial cell line (A549 cells) or the human bronchial epithelial cell line (16HBE140-) with hydrogen peroxide (H2O2). We have also assessed the protective effects of pre-incubation of both of these cells lines with H2O2 or enhancement of intracellular NPSH against H2O2-induced cell injury. Exposure of A549 and 16HBE140- cells to H2O2 (0.1 mM and 1 mM respectively for 16 h) produced the release of 40% of the total cellular LDH. H2O2 exposure produced an initial dose-dependent decrease in NPSH in A549 cells, with a subsequent increase to above control values. 16HBE140- cells also showed a dose-dependent decrease in NPSH following exposure to H2O2. Pretreatment of A549 cells with 0.1 mM H2O2 followed by subsequent exposure to H2O2 did not protect against H2O2-induced LDH release in this epithelial cell line. Pre-incubation with 2 mM N-acetylcysteine (NAC) increased NPSH but not intracellular reduced glutathione and resulted in total inhibition of H2O2-induced LDH release in both cell types. Pretreatment with reduced glutathione protected both cell types against the injurious effects of H2O2, whereas glutathione monethyl ester (GSHMEE) only partially protected A549 cells and had no effect in 16HBE140- cells. Intracellular cysteine levels were increased in both cell lines following NAC exposure but not sufficiently to account for the increase in NPSH levels. These observations raise the possibility that a critical concentration of nonprotein thiols may be necessary to protect pulmonary epithelial cells against hydrogen peroxide-induced injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号