首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
This paper describes the development of a parallel three‐dimensional unstructured non‐isothermal flow solver for the simulation of the injection molding process. The numerical model accounts for multiphase flow in which the melt and air regions are considered to be a continuous incompressible fluid with distinct physical properties. This aspect avoids the complex reconstruction of the interface. A collocated finite volume method is employed, which can switch between first‐ and second‐order accuracy in both space and time. The pressure implicit with splitting of operators algorithm is used to compute the transient flow variables and couple velocity and pressure. The temperature equation is solved using a transport equation with convection and diffusion terms. An upwind differencing scheme is used for the discretization of the convection term to enforce a bounded solution. In order to capture the sharp interface, a bounded compressive high‐resolution scheme is employed. Parallelization of the code is achieved using the PETSc framework and a single program multiple data message passing model. Predicted numerical solutions for several example problems are considered. The first case validates the solution algorithm for moderate Reynolds number flows using a structured mesh. The second case employs an unstructured hybrid mesh showing the capability of the solver to describe highly viscous flows closer to realistic injection molding conditions. The final case presents the non‐isothermal filling of a thick cavity using three mesh sizes and up to 80 processors to assess parallel performance. The proposed algorithm is shown to have good accuracy and scalability. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Two different techniques to analyze non‐Newtonian viscous flow in complex geometries with internal moving parts and narrow gaps are compared. The first technique is a non‐conforming mesh refinement approach based on the fictitious domain method (FDM), and the second one is the extended finite element method (XFEM). The refinement technique uses one fixed reference mesh, and to impose continuity across non‐conforming regions, constraints using Lagrangian multipliers are used. The size of elements locally in the high shear rate regions is reduced to increase accuracy. FDM is shown to have limitations; therefore, XFEM is applied to decouple the fluid from the internal moving rigid bodies. In XFEM, the discontinuous field variables are captured by using virtual degrees of freedom that serve as enrichment and by applying special integration over the intersected elements. The accuracy of the two methods is demonstrated by direct comparison with results of a boundary‐fitted mesh applied to a two‐dimensional cross section of a twin‐screw extruder. Compared with non‐conforming FDM, XFEM shows a considerable improvement in accuracy around the rigid body, especially in the narrow gap regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we present a model for the dynamics of particles suspended in two‐phase flows by coupling the Cahn–Hilliard theory with the extended finite element method (XFEM). In the Cahn–Hilliard model the interface is considered to have a small but finite thickness, which circumvents explicit tracking of the interface. For the direct numerical simulation of particle‐suspended flows, we incorporate an XFEM, in which the particle domain is decoupled from the fluid domain. To cope with the movement of the particles, a temporary ALE scheme is used for the mapping of field variables at the previous time levels onto the computational mesh at the current time level. By combining the Cahn–Hilliard model with the XFEM, the particle motion at an interface can be simulated on a fixed Eulerian mesh without any need of re‐meshing. The model is general, but to demonstrate and validate the technique, here the dynamics of a single particle at a fluid–fluid interface is studied. First, we apply a small disturbance on a particle resting at an interface between two fluids, and investigate the particle movement towards its equilibrium position. In particular, we are interested in the effect of interfacial thickness, surface tension, particle size and viscosity ratio of two fluids on the particle movement towards its equilibrium position. Finally, we show the movement of a particle passing through multiple layers of fluids. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
In two‐fluid flows, jumps and/or kinks along the interfaces are present in the resulting velocity and pressure fields. Standard methods require mesh manipulations with the aim that either element edges align with the interfaces or that the mesh is sufficiently refined near the interfaces. In contrast, enriched methods, such as the extended finite element method (XFEM), enable the representation of arbitrary jumps and kinks inside elements. Thereby, optimal convergence can be achieved for two‐fluid flows with meshes that remain fixed throughout the simulation. In the intrinsic XFEM, in contrast to other enriched methods, no more unknowns are present in the approximation than in a standard finite element approximation. In this work, the intrinsic XFEM is employed for the simulation of incompressible two‐fluid flows. Numerical results are shown for a number of test cases and prove the success of the method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
An adaptive (Lagrangian) boundary element approach is proposed for the general three‐dimensional drop deformation in confined flow. The adaptive method is stable as it includes remeshing capabilities of the deforming interface between drop and suspending fluid, and thus can handle large deformations. Both drop and surrounding fluid are viscous incompressible and can be Newtonian or viscoelastic. A boundary‐only formulation is implemented for fluids obeying the linear Jeffrey's constitutive equation. Similarly to the formulation for two‐dimensional Newtonian fluids (Khayat RE, Luciani A, Utracki LA. Boundary element analysis of planar drop deformation in confined flow. Part I. Newtonian fluids. Engineering Analysis of Boundary Elements 1997; 19 : 279), the method requires the solution of two simultaneous integral equations on the interface between the two fluids and the confining solid boundary. Although the problem is formulated for any confining geometry, the method is illustrated for a deforming drop as it is driven by the ambient flow inside a cylindrical tube. The accuracy of the method is assessed by comparison with the analytical solution for two‐phase radial spherical flow, leading to good agreement. The influence of mesh refinement is examined for a drop in simple shear flow. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
This paper describes a finite‐volume volume‐of‐fluid (VOF) method for simulating viscous free surface flows on dynamically adaptive quadtree grids. The scheme is computationally efficient in that it provides relatively fine grid resolution at the gas–liquid interface and coarse grid density in regions where flow variable gradients are small. Special interpolations are used to ensure volume flux conservation where differently sized neighbour cells occur. The numerical model is validated for advection of dyed fluid in unidirectional and rotating flows, and for two‐dimensional viscous sloshing in a rectangular tank. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, a robust projection method on a locally refined mesh is proposed for two‐ and three‐dimensional viscous incompressible flows. The proposed method is robust not only when the interface between two meshes is located in a smooth flow region but also when the interface is located in a flow region with large gradients and/or strong unsteadiness. In numerical simulations, a locally refined mesh saves many grid points in regions of relatively small gradients compared with a uniform mesh. For efficiency and ease of implementation, we consider a two‐level blocked structure, for which both of the coarse and fine meshes are uniform Cartesian ones individually. Unfortunately, the introduction of the two‐level blocked mesh results in an important but difficult issue: coupling of the coarse and fine meshes. In this paper, by properly addressing the issue of the coupling, we propose a stable and accurate projection method on a locally refined staggered mesh for both two‐ and three‐dimensional viscous incompressible flows. The proposed projection method is based on two principles: the linear interpolation technique and the consistent discretization of both sides of the pressure Poisson equation. The proposed algorithm is straightforward owing to the linear interpolation technique, is stable and accurate, is easy to extend from two‐ to three‐dimensional flows, and is valid even when flows with large gradients cross the interface between the two meshes. The resulting pressure Poisson equation is non‐symmetric on a locally refined mesh. The numerical results for a series of exact solutions for 2D and 3D viscous incompressible flows verify the stability and accuracy of the proposed projection method. The method is also applied to some challenging problems, including turbulent flows around particles, flows induced by impulsively started/stopped particles, and flows induced by particles near solid walls, to test the stability and accuracy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
We present a fixed‐grid finite element technique for fluid–structure interaction problems involving incompressible viscous flows and thin structures. The flow equations are discretised with isoparametric b‐spline basis functions defined on a logically Cartesian grid. In addition, the previously proposed subdivision‐stabilisation technique is used to ensure inf–sup stability. The beam equations are discretised with b‐splines and the shell equations with subdivision basis functions, both leading to a rotation‐free formulation. The interface conditions between the fluid and the structure are enforced with the Nitsche technique. The resulting coupled system of equations is solved with a Dirichlet–Robin partitioning scheme, and the fluid equations are solved with a pressure–correction method. Auxiliary techniques employed for improving numerical robustness include the level‐set based implicit representation of the structure interface on the fluid grid, a cut‐cell integration algorithm based on marching tetrahedra and the conservative data transfer between the fluid and structure discretisations. A number of verification and validation examples, primarily motivated by animal locomotion in air or water, demonstrate the robustness and efficiency of our approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A three‐dimensional numerical model is developed to analyze free surface flows and water impact problems. The flow of an incompressible viscous fluid is solved using the unsteady Navier–Stokes equations. Pseudo‐time derivatives are introduced into the equations to improve computational efficiency. The interface between the two phases is tracked using a volume‐of‐fluid interface tracking algorithm developed in a generalized curvilinear coordinate system. The accuracy of the volume‐of‐fluid method is first evaluated by the multiple numerical benchmark tests, including two‐dimensional and three‐dimensional deformation cases on curvilinear grids. The performance and capability of the numerical model for water impact problems are demonstrated by simulations of water entries of the free‐falling hemisphere and cone, based on comparisons of water impact loadings, velocities, and penetrations of the body with experimental data. For further validation, computations of the dam‐break flows are presented, based on an analysis of the wave front propagation, water level, and the dynamic pressure impact of the waves on the downstream walls, on a specific container, and on a tall structure. Extensive comparisons between the obtained solutions, the experimental data, and the results of other numerical simulations in the literature are presented and show a good agreement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
This paper compares the numerical performance of the moment‐of‐fluid (MOF) interface reconstruction technique with Youngs, LVIRA, power diagram (PD), and Swartz interface reconstruction techniques in the context of a volume‐of‐fluid (VOF) based finite element projection method for the numerical simulation of variable‐density incompressible viscous flows. In pure advection tests with multiple materials MOF shows dramatic improvements in accuracy compared with the other methods. In incompressible flows where density differences determine the flow evolution, all the methods perform similarly for two material flows on structured grids. On unstructured grids, the second‐order MOF, LVIRA, and Swartz methods perform similarly and show improvement over the first‐order Youngs' and PD methods. For flow simulations with more than two materials, MOF shows increased accuracy in interface positions on coarse meshes. In most cases, the convergence and accuracy of the computed flow solution was not strongly affected by interface reconstruction method. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

11.
In this work we present a numerical method for solving the incompressible Navier–Stokes equations in an environmental fluid mechanics context. The method is designed for the study of environmental flows that are multiscale, incompressible, variable‐density, and within arbitrarily complex and possibly anisotropic domains. The method is new because in this context we couple the embedded‐boundary (or cut‐cell) method for complex geometry with block‐structured adaptive mesh refinement (AMR) while maintaining conservation and second‐order accuracy. The accurate simulation of variable‐density fluids necessitates special care in formulating projection methods. This variable‐density formulation is well known for incompressible flows in unit‐aspect ratio domains, without AMR, and without complex geometry, but here we carefully present a new method that addresses the intersection of these issues. The methodology is based on a second‐order‐accurate projection method with high‐order‐accurate Godunov finite‐differencing, including slope limiting and a stable differencing of the nonlinear convection terms. The finite‐volume AMR discretizations are based on two‐way flux matching at refinement boundaries to obtain a conservative method that is second‐order accurate in solution error. The control volumes are formed by the intersection of the irregular embedded boundary with Cartesian grid cells. Unlike typical discretization methods, these control volumes naturally fit within parallelizable, disjoint‐block data structures, and permit dynamic AMR coarsening and refinement as the simulation progresses. We present two‐ and three‐dimensional numerical examples to illustrate the accuracy of the method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The present paper is the lead article in a three‐part series on anisotropic mesh adaptation and its applications to structured and unstructured meshes. A flexible approach is proposed and tested on two‐dimensional, inviscid and viscous, finite volume and finite element flow solvers, over a wide range of speeds. The directional properties of an interpolation‐based error estimate, extracted from the Hessian of the solution, are used to control the size and orientation of mesh edges. The approach is encapsulated into an edge‐based anisotropic mesh optimization methodology (MOM), which uses a judicious sequence of four local operations: refinement, coarsening, edge swapping and point movement, to equi‐distribute the error estimate along all edges, without any recourse to remeshing. The mesh adaptation convergence of the MOM loop is carefully studied for a wide variety of test cases. The mesh optimization generic coupling of MOM with finite volume and finite element flow solvers is shown to yield the same final mesh no matter what the starting point is. It is also shown that on such optimized meshes, the need for computational fluid dynamics (CFD) stabilization artifices, such as upwinding or artificial viscosity, are drastically reduced, if not altogether eliminated, in most well‐posed formulations. These two conclusions can be considered significant steps towards mesh‐independent and solver‐independent CFD. The structure of the three‐part series is thus, 1, general principles; 2, methodology and applications to structured and unstructured grids; 3, applications to three‐dimensional flows. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
We present a novel method to model large deformation fluid‐structure‐fracture interaction, which is characterized by the fact that the fluid‐induced loads lead to fracture of the structure and the fluid medium fills the resulting crack opening; the mutual interaction between the crack faces and the surrounding fluid contributes substantially to the overall dynamics. A mesh refitting approach is used to model the quasi‐static fracture of the structure, and a robust embedded interface formulation is used to solve the fluid flow equations. The proposed method uses a strongly coupled partitioned scheme with Aitken's Δ2 method as convergence accelerator. Selected numerical examples of increasing complexity are presented to evaluate the performance of the proposed fluid‐structure‐fracture coupling algorithm. The most difficult simulation of the reported examples involves a number of complex phenomena: mixed‐mode crack propagation through the structure, fluid starts to fill the crack opening, complete fracture of the structure into two pieces of which one is carried away by the flow.  相似文献   

14.
The hydrodynamics of fluid mixtures is receiving more and more attention in many science and engineering applications. Within the techniques for dealing with front displacements and moving boundaries between different density and/or viscosity fluids, phase fields are a class of models in which a diffusive transition region is taken into account instead of a steep interface. Although these models have a physical motivation, they require the definition of extra parameters. In order to make it less parameter dependent, the classic Allen–Cahn phase field model is modified, exploring its similarities with residual‐based discontinuity‐capturing schemes, making the phase field equation dependent on its own residual. We solve the coupling between incompressible viscous fluid flow and the phase field advective–diffusive–reactive transport to simulate the main processes in interface tension and/or buoyancy driven problems. For the solution of the Navier–Stokes and transport equations, we use a stabilized finite element formulation. The implementation has been performed using the libMesh finite element library, written in C++ , which provides support for adaptive mesh refinement and coarsening. A chemical convection benchmark problem is used to validate the proposed model, and then we solve two bubble interaction problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A stabilized finite element method, to carry out the linear stability analysis of a two‐dimensional base flow to three‐dimensional perturbations that are periodic along span, is presented. The resulting equations for the time evolution of the disturbance requires a solution to the generalized eigenvalue problem. The analysis is global in nature and is also applicable to non‐parallel flows. Equal‐order‐interpolation functions for velocity and pressure are utilized. Stabilization terms are added to the Galerkin formulation to admit the use of equal‐order‐interpolation functions and to eliminate node‐to‐node oscillations that might arise in advection‐dominated flows. The proposed formulation is tested on two flow problems. First, the mode transitions in the circular Couette flow are investigated. Two scenarios are considered. In the first one, the outer cylinder is at rest, while the inner one spins. Two linearly unstable modes are identified. The primary mode is real and represents the axisymmetric Taylor vortices. The second mode is complex and consists of spiral vortices. For the counter‐rotating cylinders, the primary transition is via the appearance of spiral vortices. Excellent agreement with results from earlier studies is observed. The formulation is also utilized to investigate the parallel and oblique modes of vortex shedding past a cylinder for the Re = 100 flow. It is found that the flow is associated with a large number of unstable oblique shedding modes. The parallel mode of vortex shedding is a special case of this family of modes and is associated with the largest growth rate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A weighted residual collocation methodology for simulating two‐dimensional shear‐driven and natural convection flows has been presented. Using a dyadic mesh refinement, the methodology generates a basis and a multiresolution scheme to approximate a fluid flow. To extend the benefits of the dyadic mesh refinement approach to the field of computational fluid dynamics, this article has studied an iterative interpolation scheme for the construction and differentiation of a basis function in a two‐dimensional mesh that is a finite collection of rectangular elements. We have verified that, on a given mesh, the discretization error is controlled by the order of the basis function. The potential of this novel technique has been demonstrated with some representative examples of the Poisson equation. We have also verified the technique with a dynamical core of a two‐dimensional flow in primitive variables. An excellent result has been observed—on resolving a shear layer and on the conservation of the potential and the kinetic energies—with respect to previously reported benchmark simulations. In particular, the shear‐driven simulation at CFL = 2.5 (Courant–Friedrichs–Lewy) and (Reynolds number) exhibits a linear speed up of CPU time with an increase of the time step, Δt. For the natural convection flow, the conversion of the potential energy to the kinetic energy and the conservation of total energy is resolved by the proposed method. The computed streamlines and the velocity fields have been demonstrated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A parallel, finite element method is presented for the computation of three‐dimensional, free‐surface flows where surface tension effects are significant. The method employs an unstructured tetrahedral mesh, a front‐tracking arbitrary Lagrangian–Eulerian formulation, and fully implicit time integration. Interior mesh motion is accomplished via pseudo‐solid mesh deformation. Surface tension effects are incorporated directly into the momentum equation boundary conditions using surface identities that circumvent the need to compute second derivatives of the surface shape, resulting in a robust representation of capillary phenomena. Sample results are shown for the viscous sintering of glassy ceramic particles. The most serious performance issue is error arising from mesh distortion when boundary motion is significant. This effect can be severe enough to stop the calculations; some simple strategies for improving performance are tested. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
We present a nodal Godunov method for Lagrangian shock hydrodynamics. The method is designed to operate on three‐dimensional unstructured grids composed of tetrahedral cells. A node‐centered finite element formulation avoids mesh stiffness, and an approximate Riemann solver in the fluid reference frame ensures a stable, upwind formulation. This choice leads to a non‐zero mass flux between control volumes, even though the mesh moves at the fluid velocity, but eliminates volume errors that arise due to the difference between the fluid velocity and the contact wave speed. A monotone piecewise linear reconstruction of primitive variables is used to compute interface unknowns and recover second‐order accuracy. The scheme has been tested on a variety of standard test problems and exhibits first‐order accuracy on shock problems and second‐order accuracy on smooth flows using meshes of up to O(106) tetrahedra. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we present a numerical scheme for solving 2‐phase or free‐surface flows. Here, the interface/free surface is modeled using the level‐set formulation, and the underlying mesh is adapted at each iteration of the flow solver. This adaptation allows us to obtain a precise approximation for the interface/free‐surface location. In addition, it enables us to solve the time‐discretized fluid equation only in the fluid domain in the case of free‐surface problems. Fluids here are considered incompressible. Therefore, their motion is described by the incompressible Navier‐Stokes equation, which is temporally discretized using the method of characteristics and is solved at each time iteration by a first‐order Lagrange‐Galerkin method. The level‐set function representing the interface/free surface satisfies an advection equation that is also solved using the method of characteristics. The algorithm is completed by some intermediate steps like the construction of a convenient initial level‐set function (redistancing) as well as the construction of a convenient flow for the level‐set advection equation. Numerical results are presented for both bifluid and free‐surface problems.  相似文献   

20.
A high‐resolution method is developed to capture the material interfaces of compressible two‐fluid flows in multiple dimensions. A fluid mixture model system with single velocity and pressure is used, and viscous effect can also be taken into account. A consistent thermodynamic law based on the assumption of pressure equilibrium is employed to describe the thermodynamic behaviors of the pure fluids and mixture of two components. The splitting and unsplit Eulerian formulations of piecewise parabolic method are extended to numerically integrate the hyperbolic part of the model system, whereas the system of diffusion equations is solved using an explicit, central difference scheme. The block‐structured adaptive mesh refinement (AMR) capability is built in the hydrodynamic code to locally improve grid resolution. The resulting method is verified to be at least second‐order accurate in space. Numerical results show that the discontinuities, particularly contact discontinuities, can be resolved sharply. The use of AMR allows flow features at disparate scales to be resolved sufficiently. In addition, three‐dimensional shock–bubble interactions are simulated to investigate effects of Mach number on bubble evolution. The flow structures including those peculiar to three‐dimensional bubble are resolved correctly, and some physical phenomena with increasing Mach number are reported. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号