首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of Ba1.5Sr1.5Co2+xZrxFe24-2xO41 hexaferrites (x = 0.00, 0.01, 0.03, 0.05, 0.07, and 0.09) were successfully prepared by the conventional solid-state reaction method. It was found that as the Co2+ and Zr4+ ions entered the hexaferrite structure, the lattice parameters increased, whereas the relative density increased when x = 0.00-0.03 and then decreased. A suitable amount of substitution increased the DC resistivity, reduced the magnetic and dielectric losses, and made the μ $\mu ^{\prime}$ and ε $\varepsilon ^{\prime}$ closer to each other. At x = 0.03, the relative density and DC resistivity of the samples reached their maxim. Besides, both the magnetic and dielectric losses were lowest within the frequency range of 10 MHz-1 GHz. Meanwhile, the hexaferrite was impedance matched to free space, and the miniaturization factor was about 15. Therefore, this low-loss ferrite with almost equal permeability and permittivity could be meaningful for antenna miniaturization and high-frequency applications.  相似文献   

2.
The complex permeability of Cu-doped nickel-zinc polycrystalline ferrites is strongly dependent on microstructure, particularly, on relative density () and average grain size (). In this study, a mathematical model, able to fit the measured magnetic permeability spectra from 106 to 109 Hz, is proposed and validated for a width range of average grain sizes (3.40–23.15 μm) and relative densities (0.83–0.96). To the authors’ knowledge, domain-wall motion and spin rotation contributions to magnetic permeability have been integrated jointly with the microstructure for the first time in the proposed model, highlighting the relative influence of each magnetizing mechanism and microstructure on the magnetic permeability at different angular frequencies.  相似文献   

3.
《Ceramics International》2022,48(14):20315-20323
NiCuZn ferrite is a material suitable for low-temperature co-fired ceramic (LTCC) technology due to its high permeability and relatively low sintering temperature. The main research questions regarding NiCuZn ferrites are focused on reducing the sintering temperature of the NiCuZn ferrites to achieve compatibility with the Ag electrodes and improve their electromagnetic properties. In this study, the electromagnetic properties of NiCuZn (Ni0.29Cu0.14Zn0.60Fe1.94O3.94) ferrites were enhanced by doping with Bi2O3, resulting in a reduction of the sintering temperature to 925 °C. The findings show that a suitable concentration of Bi2O3 doping could promote the growth of grains and result in NiCuZn ferrites with denser microstructures sintered at a low temperature. Furthermore, adding 0.30 wt% Bi2O3 to NiCuZn ferrite enhances its electromagnetic properties, such as a high real part of permeability (~937.6 @ 1 MHz), high saturation magnetization (~60.353 emu/g), low coercivity (~0.265 kA/m), and excellent dielectric constant (~14.71 @ 1 MHz). In addition, the chemically compatible Ag electrodes suggest that the NiCuZn +0.30 wt% Bi2O3 ceramics may be acceptable for LTCC technology.  相似文献   

4.
Magneto‐dielectric composite ceramics Ba3Co2Fe24O41/SrTiO3 (Co2Z/STO) loading with high volume fraction of hexaferrite Co2Z ( = 60%–95%) are successfully prepared by a hybrid process. The microstructures with homogeneously dispersed constituent grains are observed in these composites. The composites loading with 60%–80% hexaferrite possess stable magneto‐dielectric properties in the frequency range from 10 MHz to 1 GHz with both low dielectric loss and magnetic loss. For the composite loading with 60% Co2Z, the relative permittivity is 28.08 and permeability is 4.46 (at 10 MHz), the dielectric loss tangent keeps below 0.009 within the frequency range from 10 MHz to 1 GHz. Also, it possesses a magnetic loss tangent of 0.006 and 0.144 at 50 MHz and 1 GHz, respectively, which are much lower than 0.056 and 1.242 of the single Co2Z phase at the same frequency. These excellent properties indicate that the low‐loss Co2Z/STO composite ceramic is a new kind of multifunctional magneto‐dielectric material with potential for high‐frequency electromagnetic device applications.  相似文献   

5.
Significantly enhanced dielectric and loss characteristics have been observed in Ni0.4Zn0.6Fe2O4 ferrite with various Ba3Co2Fe24O41 (Co2Z) addition (x). Compared with pure NiZn and Co2Z ferrites, the composite ceramics obtain much refined grains and notable high‐frequency characteristics. With the introduction of Co2Z into NiZn ferrite matrix, the resistivity is largely increased from the order of 106 Ω cm to the order of 108 Ω cm and the frequency stability of permittivity is dramatically enhanced. Co2Z addition obviously improves the magnetic quality factor Q and reduces the dielectric loss of the ceramics at high frequency. For the samples with = 20?30 wt%, permittivity ε′ is almost unchanged from 1 MHz to 1 GHz, Q is greater than 10 in a wide frequency range, and dielectric loss tan δε is observed to be of the order of 10?3 at 100 MHz, which is lower by two orders of magnitude compared with pure NiZn and Co2Z ferrites. These characteristics are all desirable for magneto‐dielectric ferrites in high‐frequency applications.  相似文献   

6.
《Ceramics International》2016,42(12):13830-13833
Co2O3-doped NiCuZn ferrites with a high (group A) or low (group B) permeability were prepared using the conventional ceramic method to obtain high Q-factor NiCuZn ferrites for a 13.56 MHz near-field-communication (NFC) system. The XRD patterns of samples from both groups exhibited single spinel phase. Permeability monotonously decreased with increasing Co2O3 content, whereas sintering density and saturation magnetic flux density (Bs) slightly changed with Co2O3 content. The permeability of 0.45 wt% Co2O3-doped ferrite (A0.45) was similar to that of 0.10 wt% Co2O3-doped ferrite (B0.10). However, the former sample presented a considerably higher Q-factor than the latter sample. The former sample also presented enhanced stability variation of Q-factor with frequency, which indicated an improved electromagnetic shielding function for the NFC system. The mechanisms involved were also elucidated.  相似文献   

7.
AgPb2B2V3O12 (B = Mg, Zn) ceramics with low sintering temperature were synthesized via the conventional solid-state reaction route. Rietveld refinements of the X-ray diffraction patterns confirm cubic symmetry with space group . The number of observed vibrational modes and those predicted by group theoretical calculations also confirm the space group. At the optimum sintering temperature of 750°C/4 hours, AgPb2Mg2V3O12 has a relative permittivity of 23.3 ± 0.2, unloaded quality factor () of 26 900 ± 500 GHz (), and temperature coefficient of resonant frequency of 19.3 ± 1 ppm/°C, while AgPb2Zn2V3O12 has the corresponding values of 26.4 ± 0.2, 28 400 ± 500 GHz () and –18.4 ± 1 ppm/°C at 590°C/4 hours. Microwave dielectric properties of a few reported garnets and Pb2AgB2V3O12 (B = Mg, Zn) ceramics were correlated with their intrinsic characteristics such as the Raman shifts as well as width of A1g Raman bands. Higher quality factor was obtained for lower full width at half-maxima (FWHMs) values of A1g modes. The increase in B-site bond valence contributes to high and low |τf| with the substitution of Zn2+ by Mg2+. Furthermore, the high ionic polarizability and unit cell volume with Zn2+substitution contribute to increased relative permittivity.  相似文献   

8.
Hexagonal structure magnetoplumbite ferrites have revealed a higher dispersion frequency than that of nickel ferrites because of the magnetoplumbite's magnetic anisotropy. The magnetoplumbite ferrite densification temperature always exceeds 1000 °C and the initial low temperature firing permeability of magnetoplumbite ferrites with added glass is too low (μi = 2–4). Therefore, it is desirable to develop a material that has a higher permeability at above 300 MHz and can be densified at temperatures below 900 °C. The Bi2O3–B2O3–ZnO–SiO2 (BBSZ) glass addition effects on the densification and magnetic properties of Co2Y–NiCuZn ferrite composites with various Co2Y/NiCuZn ferrite ratios were investigated. The densification of Co2Y–NiCuZn ferrite composites was enhanced by the addition of glass at low sintering temperatures (<900 °C) due to the liquid phase sintering. Co2Y–NiCuZn ferrite composites with 4 wt% BBSZ glass sintered at 900 °C show a relative density above 90%, a high-initial-permeability of 5–6, a quality factor of above 30 in the 200–300 MHz frequency and a resonance frequency above 1 GHz, which can be used in high frequency multilayer chip inductors.  相似文献   

9.
W-type ferrite is a member of the hexagonal ferrite family and a potential permanent magnet material. However, its synthesis conditions are not fully understood yet. Samples were sintered either at 1400°C in air and quenched, or at 1300°C at reduced oxygen partial pressure. The precise stability conditions of this W-type ferrite were investigated in the temperature range of 1200°C-1400°C using thermogravimetry, XRD, and electron microscopy. At 1300°C, the ferrite is stable at oxygen partial pressures of . At more oxidizing conditions, the ferrite decomposes into M-type ferrite and hematite, while at more reducing atmospheres Sr4Fe6O13 and magnetite are formed. The nonstoichiometry δ of SrFe18−δO27 was derived from thermal analysis data at 1300°C as function of oxygen partial pressure and was found to be mainly due to cation vacancies. Magnetization measurements show that this W-type ferrite exhibits Ms = 103 emu/g at T = 4 K, which agrees well with a ferrimagnetic spin arrangement according to Gorter's model. As alternative, Zn-substituted W-ferrite was found to be stable in air at 1200°C with a large Ms = 123 emu/g at 4 K.  相似文献   

10.
Low-temperature-sintered Ni0.5Cu0.125Zn0.375Fe1.98O4 ferrites co-added with x wt% (x = 0.00-0.25 wt%) La2O3 and 0.25 wt% Bi2O3 were successfully prepared via conventional solid-phase reaction method. The phase composition, microstructure, magnetic properties, and especially power loss variation of the samples were systematically studied. The results showed that all samples possessed a single spinel phase structure at a sintering temperature of 900°C, exhibiting high degree of densification and uniform grains. The appropriate amount of La2O3 additive improved the saturation flux density and permeability of NiCuZn ferrites, simultaneously reducing the coercivity and power loss. The maximum permeability and the lowest power loss were achieved at x = 0.15 wt%. The corresponding sample had the homogeneous microstructure and excellent magnetic properties, being a promising low-temperature co-fired ferrite candidate for magnetic power components.  相似文献   

11.
Effects of doping of Y and sintering atmosphere on the dielectric properties of Sr1-1.5xYxTiO3 ceramics (SYT, x = 0-0.014) were systematically investigated. The SYT14 (x = 0.014) ceramic sintered in N2 attains a colossal permittivity (CP, Ɛr = 28 084@ 1kHz, 27 685@ 2MHz) and an ultralow dielectric loss (tanδ = 0.007@ 1kHz, 0.003@ 2MHz) at room temperature. Because of using of the A-site deficient, there are in SYT ceramics. Through the comprehensive analysis of dielectric responses, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and complex impedance data, it is proved that doping of Y promotes the formation of (Y3+ are located at Sr2+ site), (Y3+ are located at Ti4+ site), and Ti3+, and sintering in reducing atmosphere of N2 results in more (oxygen vacancy) and (strontium vacancy) generating in SYT ceramics. The defect dipoles, , , , , , and formed by introduced defects make charge carriers localized in SYT ceramics. The combined action of the massive defect dipoles is responsible for the ultralow tanδ and CP in SYT14 ceramics sintered in N2.  相似文献   

12.
This paper reports on the phase formation of perovskite Pb(In1/2Nb1/2)O3-Pb(Zn1/3Nb2/3)O3-PbTiO3 (PIN-PZN-PT) powder when doped with 0.04 to 0.83 mol% ZnO. Air calcination of undoped powder mixtures for 4 hours at 800°C resulted in a mixture of Pb2Zn0.29Nb1.71O6.565 pyrochlore, PIN-PZN-PT perovskite, and In2O3. ZnO dopant concentrations as low as 0.04 mol% increased the rate of perovskite formation and resulted in near phase pure perovskite powder of 0.5 μm particle size when heated at 800°C in air. In all cases PbTiO3 and Pb(In1/2Nb1/2)O3 formed prior to PIN-PZN-PT formation. ZnO doping promotes perovskite phase formation by increasing the reactivity of the intermediate pyrochlore phase by substituting Zn2+ on Nb5+ sites and forming oxygen vacancies when heated in air. Heating in high resulted in an incomplete reaction and a mixture of perovskite and pyrochlore whereas low resulted in phase separation into a mixture of rhombohedral perovskite, tetragonal perovskite, and pyrochlore. The sensitivity clearly shows that oxygen vacancies due to ZnO-doping are critical for synthesis of phase pure PIN-PZN-PT powder.  相似文献   

13.
In this work, the influence of the sintering temperature on the physical properties of (Pb0.8La0.2)(Ti0.9Ni0.1)O3 (PLT-Ni) ceramics is reported. The experimental data revealed that the energy band gap of PLT-Ni ceramics could be tailored from approximately 2.7 to 2.0 eV by changing the sintering temperature from 1100°C to 1250°C. It is demonstrated that the simple substitution of Ti4+ by Ni2+ cations is effective to decrease the intrinsic band gap while increasing the tetragonality factor and the spontaneous polarization. However, the additional red-shift observed in the absorption edge of the PLT-Ni with increasing the sintering temperature was associated with a continuous increase in the oxygen vacancies () amount. It is believed that the impact of the creation of these thermally induced is manifold. The presence of and Ni2+ ions generate the Ni2+- defect-pairs that promoted both a decrease in the intrinsic band gap and an additional increase of the tetragonality factor, consequently, increasing the spontaneous polarization. The creation of Ni2+- defects also changed the local symmetry of Ni2+ ions from octahedral to a square pyramid, thus lifting the degeneracy of the Ni2+ 3d orbitals. With the increase in the sintering temperature, lower-energy absorbing intraband states were also formed due to an excess of , being responsible for an add-on shoulder in the absorption edge, extending the light absorption curve to longer wavelengths and leading to an additional absorption in “all investigated” spectrum as well.  相似文献   

14.
The Bi2O3–B2O3–ZnO–SiO2 (BB35SZ) glass effects on the sintering behavior and magnetic properties of Bi–Zn co‐doped Co2Y ferrites were investigated in developing low‐temperature‐fired ferrites. The results indicate that BB35SZ glass can be used as a sintering aid to reduce the densification temperature of Co2Y ferrites from 1300°C to 900°C. The 2(Ba0.9Bi0.1O)·2(Zn0.4Co0.4Cu0.2O)·6(Fe1.97Zn0.03O3) ferrite with 4 wt% BB35SZ glass can be densified below 900°C, exhibiting an initial permeability of 3.4 and quality factor of 55. This process provides a promising candidate for multilayer chip magnetic devices for microwave applications.  相似文献   

15.
It is well-known that the high sintering temperatures of (Na1/2Bi1/2)TiO3 (NBT)-based incipient piezoceramics limit their applications on low-cost multilayer piezoelectric actuators with base metal internal electrodes. In this work, a synergistic sintering additive of 0.75 wt% Li2CO3 and 0.75 wt% CuO was utilized to explore the effect on sintering behavior and electrostrain of (Na1/2Bi1/2)0.935Ba0.065Ti0.975(Fe1/2Nb1/2)0.025O3 (NBT-BT-0.025FN) incipient piezoceramic. The optimal sintering temperature of NBT-BT-0.025FN decreased from 1160°C to 940°C due to the formation of a liquid phase, with limited degradation on electrostrain. When sintered at 940°C, a large strain of 0.39% (a nominal piezocoefficient of 571 pm/V) was achieved, which is promising for potential actuator applications co-firing with Ag electrodes.  相似文献   

16.
The introduction of transition metal doping, particularly Fe3+, into high-performance microwave dielectrics can make “smart” materials that switch between a high-Q, low loss state and a low-Q, high loss state using a small external magnetic field. In this study, the dielectric and magnetic properties of the high permittivity host material LaAlO3r = 22.5), when doped with Fe3+, are reported. Spin losses dominate the loss tangent at cryogenic temperatures and survive up to room temperature. Peaks in the loss tangent versus temperature relation are observed near 40, 75, and 215 K. Additional measurements of samples exposed to annealing in varying environments, combined with Debye analysis and the results of native defect energy predictions from density functional calculations[Phys Rev B. 2009;80:104115], allows us to associate the 40, 75, and 215 K peaks to the following reactions, , , and , respectively.  相似文献   

17.
《Ceramics International》2019,45(11):13685-13691
High-performance inductive couplers require Ni-Zn ferrites of high saturation magnetization, Curie temperature, permeability and application frequency. However, for inductive couplers some of these properties run against each other in one ferrite. To balance these requirements, in this work, novel Ni-Zn ferrite ceramics co-doped by Ce3+ and Co2+ ions with chemical formula Ni0.4Zn0.5Co0.1CexFe2-xO4 (x = 0–0.06) were designed and fabricated by a molten salt method. For the acquired ferrites, both Ce3+ and Co2+ ions could come into the lattices. The initially doped Co2+ ions would cause a slightly decreased grain size and dramatically reduced the specimen densification, but the further added Ce3+ ions could effectively inhibit the density reduction, while the grain size continues to dwindle. The additional Ce3+ ions would generate a foreign CeO2 phase in the acquired specimens. The sole doping of Co2+ ions would aggrandize the saturation magnetization of ferrites, but the introduction of Ce3+ ions would cause its decrease. However, with an appropriate doping level, the Ce3+ and Co2+ ions co-doped ferrites could preserve a relatively high saturation magnetization, while the Curie temperature and cut-off frequency of the ferrites are dramatically augmented, although the permeability would be somewhat reduced. The as-acquired ferrites were simulated to apply in inductive couplers, revealing that the devices manufactured by the Ni0.4Zn0.5Co0.1CexFe2-xO4 ferrites had significantly high maximum operating frequency, compared with that of the one manufactured by pure Ni0.5Zn0.5Fe2O4 ferrite.  相似文献   

18.
The temperature dependences of the electrical conductivity , Seebeck coefficient , and heat capacity Cp(T) of polycrystalline samples of Bi2Te3, Bi2Te3+1%CuI, and Bi2Te3+1%(CuI+1/2Pb) are investigated in the temperature range below room temperature. Based on the temperature dependences of all investigated physical properties, it is discovered that phase transition occurs at 120–200 K. Investigation of single crystals shows that anomalies in the electrical resistivity occur only across the crystal growth axis (across the well-conducting Bi–Te plane). Investigation of the low-temperature dependence of electrical conductivity shows that all polycrystalline samples exhibit quasi-two-dimensional electron transport. Additionally, quasi-two-dimensional transport is detected in single crystals based on anisotropy analysis (where is the resistivity along the crystal growth axis, and is resistivity across the crystal growth axis) and temperature dependence below 50 K. The Fermi energy is estimated using the temperature dependence of . It is discovered that an increase in at T > 200 K is associated with the phase transition. For single-crystal samples, the maximum thermoelectric figure of merit ZT, as observed along the crystal growth axis, increases with doping. A maximum ZT value of ∼1.1 is observed for the Bi2Te3+1%(CuI+1/2Pb) sample at room temperature ().  相似文献   

19.
Lanthanum nickelates with Ruddlesden-Popper structure (La2NiO4, La3Ni2O7, and La4Ni3O10) and perovskite structure (LaNiO3) have attracted considerable attention due to their potential applications such as solid oxide fuel cells. Currently, the ionic and electronic conduction properties of La3Ni2O7, La4Ni3O10, and LaNiO3 are not fully understood because it is quite difficult to prepare their dense bodies required for the characterization. The difficulty arises from their narrow thermodynamic stable temperature and oxygen partial pressure ranges. In this study, we successfully obtained dense bodies of single-phase La3Ni2O7, La4Ni3O10, and LaNiO3 via a post-sintering oxidation process. First, dense pellets composed of fine-grain precursors La2NiO4 and NiO (~0.5 μm) were prepared by nitrate freeze-drying technique and low-temperature sintering at 1150°C-1225°C. Then they were converted into almost single-phase La3Ni2O7, La4Ni3O10, and LaNiO3 by high-temperature oxidation. La3Ni2O7 and La4Ni3O10 were obtained under an oxygen partial pressure of 1 bar at 1275°C and 1200°C-1250°C, respectively, while LaNiO3 was obtained under of 392 bar at 1250°C using hot isostatic pressing. The relative densities of the pellets exceeded 90%. With regard to their phase stability, decomposition was not detected at 600°C-1100°C in air for at least 100 hour despite their thermodynamic instability.  相似文献   

20.
We studied the sintering behavior and magnetic properties of Ni0.60-yCuyZn0.42Fe1.98O3.99 ferrites. The shrinkage is shifted toward lower temperature with increasing Cu content y. The addition of Bi2O3 sintering aid induces enhanced shrinkage at T < 900°C and dense ceramics are obtained after sintering at 900°C. Such ferrites exhibit a permeability of µ = 135-250 depending on the composition, sintering temperature and concentration of sintering additive. Ferrites with y = 0.20 show a high Curie temperature of T= 307°C. Multilayer inductors were fabricated and cofired at 900°C using ferrite tapes without and with 0.75 wt% Bi2O3. The compatibility of ferrite tapes with different metal pastes (Ag, AgPd, and Au) was evaluated. Ferrite tapes were also integrated between layers of low-k dielectric CT708 tapes and successfully cofired at 900°C. Preliminary tests indicate that the multilayer inductors can be operated up to temperatures of 250°C. This demonstrates that high-Tc Ni-Cu-Zn ferrites are promising magnetic materials for inductive components for high operating temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号