首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 375 毫秒
1.
选取丝瓜络固定颤藻冻干灭活(Freeze-drying-inactivated Oscillatoria lutea Immobilized,FI)和干热灭活(Hot-air-inactivated Oscillatoria lutea Immobilized,HI)为吸附剂,以游离冻干灭活(Freeze-drying-inactivated Oscillatoria lutea Free,FF)和游离干热灭活颤藻(Hot-air-inactivated Oscillatoria lutea Free,HF)作对照,考察pH值、时间、Pb2+初始浓度和共存离子对吸附剂吸附溶液中Pb2+的影响及机制.结果表明,FI吸附效果优于HI及对照.pH值、时间、Pb2+初始浓度和共存离子对FI吸附性能的影响与对HI及对照的影响变化趋势一致;FI和HI吸附容量依赖pH值而变化,当pH值为5时,达到峰值;Pb2+初始浓度增加,吸附容量也随着增加,吸附平衡浓度分别为80和60mg/L;吸附平衡时间分别为90和60min;共存离子抑制吸附剂对Pb2+吸附,抑制强弱顺序为:Ca2+>Mg2+>K+>Na+.4种吸附剂对Pb2+的吸附符合准二级动力学方程,吸附过程主要受化学吸附速率影响.FI和FF吸附过程拟合适合Langmuir模型和Freundlich模型,而HI对Pb2+的吸附过程符合Langmuir模型,HF对Pb2+的吸附过程符合Freundlich模型.傅里叶红外光谱(FTIR)阐释了FI吸附Pb2+的主要官能团为氨基和羧基,吸附过程中发生了离子交换、静电吸引和络合作用.循环吸附实验显示了FI在工业处理Pb2+中具有很大应用潜力.  相似文献   

2.
为满足采用简便方法检测痕量铅离子(Pb2+)的需求,构建了新型的超灵敏、高特异性表面等离子体共振(SPR)生物传感器,用于水中Pb2+检测.以硫醇化GR-5脱氧核酶(DNAzyme)为Pb2+特异性识别探针,并自组装到芯片金膜表面,底物官能化的纳米金(S-AuNPs)用于信号增强,并与DNAzyme杂交形成传感薄膜.AuNPs不仅增加了质量变化,其局部表面等离子体共振(LSPR)与芯片表面传播SPR的耦合作用也可产生信号放大的效果.在Pb2+离子存在下,DNAzyme催化底物裂解,导致AuNPs的去除并引起SPR信号显著变化.通过X射线光电子能谱和扫描电镜对芯片表面的表征分析验证了传感薄膜构建过程和检测原理.Pb2+检测实验结果表明,1 μmol/L DNAzyme修饰的传感器检测效果最好,检测限为80pmol/L,并在100nmol/L范围内与Pb2+浓度的对数呈线性关系(R2=0.992).该传感器对10倍浓度的其他金属离子无明显响应,说明其具有良好的Pb2+特异性;检测自来水和地下水中Pb2+的结果与ICP-MS方法有良好的一致性.研究建立的Pb2+检测方法具有高灵敏度和特异性,且操作简便,具有现场检测的应用前景.  相似文献   

3.
为满足采用简便方法检测痕量铅离子(Pb2+)的需求,构建了新型的超灵敏、高特异性表面等离子体共振(SPR)生物传感器,用于水中Pb2+检测.以硫醇化GR-5脱氧核酶(DNAzyme)为Pb2+特异性识别探针,并自组装到芯片金膜表面,底物官能化的纳米金(S-AuNPs)用于信号增强,并与DNAzyme杂交形成传感薄膜.AuNPs不仅增加了质量变化,其局部表面等离子体共振(LSPR)与芯片表面传播SPR的耦合作用也可产生信号放大的效果.在Pb2+离子存在下,DNAzyme催化底物裂解,导致AuNPs的去除并引起SPR信号显著变化.通过X射线光电子能谱和扫描电镜对芯片表面的表征分析验证了传感薄膜构建过程和检测原理.Pb2+检测实验结果表明,1 μmol/L DNAzyme修饰的传感器检测效果最好,检测限为80pmol/L,并在100nmol/L范围内与Pb2+浓度的对数呈线性关系(R2=0.992).该传感器对10倍浓度的其他金属离子无明显响应,说明其具有良好的Pb2+特异性;检测自来水和地下水中Pb2+的结果与ICP-MS方法有良好的一致性.研究建立的Pb2+检测方法具有高灵敏度和特异性,且操作简便,具有现场检测的应用前景.  相似文献   

4.
以修复土壤中重金属污染物为目标,开展以石英砂为多孔介质材料,氧化石墨烯为吸附剂,在改变重金属种类、重金属污染物浓度、注入氧化石墨烯浓度和渗流速度条件下的土柱穿透试验.首先,对单一重金属的迁移特性及氧化石墨烯对重金属的去除效果和固化机制进行研究.试验表明,改变渗流速度对单一重金属离子(Pb2+和Cd2+)的迁移影响较小.氧化石墨烯穿透污染土柱时,低重金属污染浓度和高渗流速度会促进氧化石墨烯的迁移,进而促进重金属污染物的迁移.氧化石墨烯对重金属离子(Pb2+和Cd2+)有很好的去除及固化效果,对铅离子和镉离子的最大固化率为88.2%和63.9%.其次,通过SEM、FTIR、Zeta电势试验发现,氧化石墨烯对重金属离子的吸附机理主要是静电吸引、离子交换和表面络合.通过DLVO理论计算结果可知,负载重金属的氧化石墨烯相较于未负载重金属的氧化石墨烯更易固化在土壤中,其中负载镉离子的氧化石墨烯比负载铅离子的氧化石墨烯更容易固化在土壤中.  相似文献   

5.
为探究矿物碳酸化与污泥厌氧消化耦合过程中实现CO2捕获和N/P营养盐协同回收的可行性,在污泥水解液为底物的厌氧消化系统中,研究不同比例Mg2+/Ca2+离子添加对厌氧消化系统中CO2捕获和营养盐的协同回收效果的影响.结果表明,添加Mg2+/Ca2+离子为(20mmol/L)/(0mmol/L)、(10mmol/L)/(10mmol/L)和(0mmol/L)/(20mmol/L)均可促进有机质降解,使沼气产量分别提升16.97%、21.56%和23.99%,并使CO2含量由27.27%分别下降至24.81%,22.06%和21.98%.不同比例Mg2+/Ca2+离子添加可使磷酸根浓度下降63.46%~66.47%,但仅Mg2+/Ca2+离子以(20mmol/L)/(0mmol/L)和(10mmol/L)/(10mmol/L)添加的实验组中氨氮浓度得到下降.XRD分析揭示,Mg2+/Ca2+离子以(20mmol/L)/(0mmol/L)、(10mmol/L)/(10mmol/L)和(0mmol/L)/(20mmol/L)添加时分别使厌氧消化系统中形成鸟粪石和碳酸镁、鸟粪石和方解石、方解石和三斜磷钙石.Mg2+、Ca2+离子等摩尔量联合添加可实现最优的CO2捕获和营养盐协同回收效果.  相似文献   

6.
以真核微藻斜生栅藻为试验对象,对其在重金属Pb2+胁迫下,添加焦性没食子酸(PA)后的生物量变化及其机制进行了探究.结果表明:作用第4d,10.0mg/L单独Pb2+对斜生栅藻的抑制率为73.1%,但在Pb2+胁迫的同时添加不同浓度PA(1.0,5.0,10.0,15.0mg/L),可见明显的低促高抑现象,1.0~10.0mg/LPA添加组抑制率显著低于单独Pb2+胁迫组,P<0.05.其机制研究表明,Pb2+可严重损害藻细胞的结构,增加细胞的氧化压力,在早期诱导抗氧化酶如超氧化物歧化酶(SOD)、谷胱甘肽还原酶(GR)、谷胱甘肽过氧化物酶(GSH-Px)和谷胱甘肽-S-转移酶(GST)的显著升高;而添加PA后,除最高浓度组(15mg/L),其余各组4种抗氧化酶活力在实验测定时间内均保持在较高水平,尤其是5.0~10.0mg/L组,其光合效能以及对Pb2+的吸收率较单独Pb2+胁迫组均有显著性提高,P<0.05,且细胞的形...  相似文献   

7.
利用聚酰胺复合纳滤膜去除水中的PFOS,在0.6MPa操作压力条件下过滤12h,研究PFOS浓度、离子种类、总离子强度以及海藻酸对PFOS截留效果的影响.结果表明,随着PFOS浓度增大其截留率也随之升高;溶液总离子强度越大,PFOS截留率越高,当过滤进行到12h时,溶液总离子强度为150mmol/L时,PFOS的截留率比溶液总离子强度为10mmol/L时仍高2.1%;溶液中加入1mmol/L Ca2+时PFOS的截留效果优于加入1mmol/L Na+时的效果;并且随着二价离子浓度的增加,截留率上升,过滤结束时,Ca2+浓度为3mmol/L的条件下PFOS的截留率约为97.5%,高于1mmol/L Ca2+存在时PFOS的截留率(95%);海藻酸存在时PFOS的截留率显著增高,尤其在1mmol/L钙离子存在条件下,过滤12h后PFOS的截留率仍可达到95%以上,但海藻酸会导致膜污染的发生从而引起膜通量下降.  相似文献   

8.
为探索新型生物吸附剂,以乌贼墨黑色素(SIM)为吸附剂,研究Pb2+、Cu2+单组分溶液及Pb2+-Cu2+二元混合体系中SIM对Pb2+和Cu2+的吸附效果并构建等温吸附模型.结果表明,pH值、SIM添加量、吸附时间对SIM吸附Pb2+和Cu2+的吸附量影响较大,而吸附温度对吸附效果影响较小;单组分吸附与二元混合体系吸附对比表明,二元混合体系中Pb2+和Cu2+存在竞争吸附.应用L (Langmuir)和F (Freundlich)等温吸附模型拟合了SIM对Pb2+、Cu2+单组分金属离子的吸附过程,其中L模型与试验结果拟合度更高;应用Non-modified Langmuir、Modified Langmuir isotherm、Extended Langmuir、Extended Freundlich和SRS模型5种模型对Pb2+-Cu2+二元混合体系的等温吸附过程进行拟合,其中Extended Langmuir模型与试验结果拟合度最佳.应用红外光谱(FTIR)分析SIM吸附金属离子的原理时发现,SIM上羟基、-NH和不饱和键是金属离子的吸附位点,且SIM对Pb2+的吸附能力优于对Cu2+的吸附.  相似文献   

9.
分别以惰性介质(土、砂)和强化介质(给水厂污泥、铁锰复合氧化物)为研究对象,考察道路径流溶解性有机物(DOM)存在对生物滞留介质吸附去除Cu2+和Pb2+过程的影响,并揭示其主要响应组分及作用机制.结果表明,径流DOM、DOM各分子量组分和各化学组分均可抑制惰性生物滞留介质对Cu2+和Pb2+的吸附去除,促进强化生物滞留介质对两者的吸附去除;其中,径流DOM中<1kDa分子量组分和亲水性组分对惰性介质吸附去除Cu2+和Pb2+的抑制作用最明显、对强化介质吸附去除Cu2+和Pb2+的促进作用也最明显,是影响生物滞留介质对Cu2+和Pb2+吸附过程的关键DOM组分.<1kDa分子量组分存在使砂介质对Cu2+和Pb2+的吸附量减少了62.96%和83.70%,使铁锰复合氧化物介质对Cu2+和Pb2+吸附量增加了81.16%和4.67%;亲水性组分存在使土介质对Cu2+和Pb2+的吸附量最高减少了41.43%和69.12%,使给水厂污泥介质对Cu2+和Pb2+的吸附量最高增加了32.35%和39.06%.  相似文献   

10.
渗滤液中Na+对生物膜形成初期吸附特性的影响   总被引:1,自引:0,他引:1  
为了探究渗滤液微生物生物膜形成初期吸附特性, 设置4种Na+浓度采用耗散型石英晶体微天平(QCM-D), 结合刚性模型和黏弹性模型拟合分析, 探究吸附质量和黏弹性随时间变化.结果表明: 生物膜初期吸附存在可逆吸附和不可逆吸附过程, 150mmol/L的Na+促进了不可逆吸附的形成.Na+增加了溶液Zeta电位, 细菌表面所带净电荷量减小; 随Na+浓度由2.5mmol/L增加至50mmol/L, 表面吸附速率逐渐增加, 符合静电双层理论, Na+继续增加至150mmol/L, 吸附速率无显著变化.在不同浓度Na+溶液中, 吸附膜柔性大小顺序为: 150mmol/L>2.5mmol/L>10mmol/L≈50mmol/L.模型拟合结果表明, 膜黏弹性随吸附过程逐渐增加; 随Na+浓度增加, 吸附膜质量增加, 膜黏弹性先升高后不变.  相似文献   

11.
西安市某地下水源水厂石英砂滤池中滤料表面形成的氧化膜催化活性很低,基本不具备去除铁、锰、氨氮的能力,出水安全隐患较高,因此在中试滤柱系统中评价了石英砂滤料除铁(Fe2+)、锰(Mn2+)、氨氮(NH4+-N)效能,并进行活性滤料的性能优化.在此基础上,在水厂原有石英砂滤池中进行活性滤料的原位制备.结果表明,水厂石英砂滤料基本不具备去除Fe2+、Mn2+、NH4+-N能力.在中试滤柱系统中,经过3d挂膜,低浓度Fe2+、Mn2+、NH4+-N的去除率均可达93%以上.在滤池中进行原位改造后,进水NH4+-N浓度为(0.3±0.05) mg/L时,去除率由28%提高到90%,进水Mn2+浓度为(0.3±0.05) mg/L时,去除率由50%提高到80%.进一步分析滤料表征发现,改造后滤料形貌和结构均发生了改变.XRD分析结果表明,改造后滤料产生了新峰,证明了滤料具备了活性.改造后可满足案例水厂净水安全的需要,具有较高的实用价值.  相似文献   

12.
基于硫化物与汞亲和性较强的特性,构建了SnS2/α-Al2O3复合型除汞吸附剂材料.实验结果表明,该复合材料对Hg2+的最大吸附容量可达950mg/g,其吸附效果不受pH值(酸性pH=1~6)影响,汞浓度为65mg/L时,均能达到近100%的汞去除效率.同时,吸附过程不会受其他金属离子(Cd2+、Cr3+、Zn2+、Cu2+、Pb2+、Ni2+、Co2+等)的强烈干扰,汞浓度为1mmol/L条件下,汞的去除速率及效率均未有很大差距.吸附过程未有大量Sn2+析出,证明了该复合材料的酸性稳定性.通过吸附动力学以及吸附机制研究表明,该吸附过程为单层化学吸附.通过盐酸溶液浸泡洗涤,可以实现SnS2/α-Al2O3复合材料的再生和循环使用.  相似文献   

13.
利用磷溶菌(PSB)对稻壳(RB)和污泥(SB)生物炭进行不同时间的改性,研究了其对水体中Pb2+和Cd2+(1000mg/L)的修复机制.主要通过测定改性生物炭的理化特性和重金属含量,并利用结构方程模型研究了微生物改性生物炭对重金属的吸附机理.结果表明,PSB显著改善生物炭的孔径结构、比表面积BET (增加了12.5%~175.0%)和表面官能团.特别是还增加了生物炭中C和P元素的释放,促进了生物炭表面的生物矿化机制.PSB改性显著提高了生物炭对Pb2+和Cd2+的吸附作用(RB提高:Pb2+=9.5%~34.5%,Cd2+=34.7%~219.9%,SB提高:Pb2+=65.3%~101.3%,Cd2+=106.6%~248.6%).通过Pb和Cd的修复差异,发现不同重金属对微生物的胁迫是导致改性生物炭对重金属的修复反应路径相反的原因.此外,结构方程模型证实6~12h的PSB改性效果最好,且BET不是主要影响因素.不同的生物质炭改性后的修复机制也存在明显差异,孔径结构(Rmax2=0.99)是改性RB的主要吸附途径,化学沉淀(Rmax2=0.99)是改性SB的主要吸附途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号