首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
全陶瓷微密封(FCM)燃料是一种弥散颗粒燃料。由于弥散颗粒燃料存在双重非均匀性,传统的确定论方法及蒙特卡罗方法皆难以处理这种双重非均匀效应以获得有效多群截面。本文基于超细群方法建立FCM燃料的有效多群截面计算方法。为描述燃料棒内TRISO颗粒的非均匀性,在共振能量段,通过采用超细群方法求解包含TRISO颗粒的一维球模型得到超细群缺陷因子,通过超细群缺陷因子修正所有核素的超细群截面即可将颗粒和基质均匀化。由于TRISO颗粒在热能区也存在较强的自屏效应,在热能区,利用穿透概率及碰撞概率等价得到多群缺陷因子,通过多群缺陷因子修正所有核素的多群截面将燃料和基质均匀化。均匀化后的FCM燃料组件即可视为普通压水堆燃料组件进行共振计算。利用丹可夫修正因子等价得到FCM燃料组件各燃料棒的等效一维棒模型,对一维棒模型求解超细群慢化方程从而得到共振能量段的有效自屏截面。数值结果表明,该方法能有效处理FCM燃料的双重非均匀性,得到精确的有效自屏截面。  相似文献   

2.
全陶瓷微密封(FCM)燃料是一种弥散颗粒燃料。由于弥散颗粒燃料存在双重非均匀性,传统的确定论方法及蒙特卡罗方法皆难以处理这种双重非均匀效应以获得有效多群截面。本文基于超细群方法建立FCM燃料的有效多群截面计算方法。为描述燃料棒内TRISO颗粒的非均匀性,在共振能量段,通过采用超细群方法求解包含TRISO颗粒的一维球模型得到超细群缺陷因子,通过超细群缺陷因子修正所有核素的超细群截面即可将颗粒和基质均匀化。由于TRISO颗粒在热能区也存在较强的自屏效应,在热能区,利用穿透概率及碰撞概率等价得到多群缺陷因子,通过多群缺陷因子修正所有核素的多群截面将燃料和基质均匀化。均匀化后的FCM燃料组件即可视为普通压水堆燃料组件进行共振计算。利用丹可夫修正因子等价得到FCM燃料组件各燃料棒的等效一维棒模型,对一维棒模型求解超细群慢化方程从而得到共振能量段的有效自屏截面。数值结果表明,该方法能有效处理FCM燃料的双重非均匀性,得到精确的有效自屏截面。  相似文献   

3.
为计算双重非均匀性条件下的共振截面,提出了耦合Sanchez Pomraning方法的改进的子群方法(ISSP)。ISSP采用精细化共振能群结构来规避共振干涉处理,通过求解双重非均匀性条件下的子群固定源方程和慢化方程得到颗粒和基体等各材料的有效共振截面,最后进行双重非均匀性条件下的输运计算。数值结果表明,与连续能量蒙特卡罗程序及超细群计算结果相比,ISSP可精确高效地计算双重非均匀性条件下的共振截面。  相似文献   

4.
用群截面对燃料溶解过程中出现的栅格、燃料双重不均匀和溶液3种系统作临界计算时,需要考虑中子的共振自屏效应。标准自屏公式或经过丹可夫因子修正的自屏公式不适用于燃料双重不均匀系统。OECD/NEA临界工作小组的结果表明,必须用碰撞概率(PIC)方法,子群方法或精细慢化方法修正才能得到共振自屏效应的准确结果。用点截面作临界计算时,不会观察到自屏效应,可以准确进行包括燃料双重不均匀系统在内的临界计算。  相似文献   

5.
弥散颗粒燃料元件中燃料颗粒以随机形式弥散在基体中,难以获得确定几何。同时由于共振自屏现象的存在,呈现出一种双重非均匀系统。当前均匀系统产生的共振积分在双重非均匀系统中使用时,会在较低的共振能群产生一定的共振计算误差。为满足现有组件计算程序直接进行双重非均匀性共振计算的需求。基于Sanchez-Pomraning模型下的特征线固定源计算方法,建立一套双重非均匀共振积分表,最后结合子群方法实现随机介质燃料元件的共振计算。数值结果表明,考虑双重非均匀性产生的积分表,在相同的输运条件下和积分表的适用范围内,由子群共振部分对keff计算带来的绝对偏差能保持在200 pcm内。该工作的意义是对于一些不宜改动的传统组件程序,如HELIOS,通过在线修改共振积分表和子群参数,从而使其直接进行弥散颗粒燃料问题的计算成为可能。  相似文献   

6.
为实现对复杂几何、复杂能谱组件的精细计算,提出了一种基于特征线的超细群慢化方程求解方法。通过耦合特征线法中的固定源计算,在共振能量范围内建立超细群慢化方程,通过精细能谱获得复杂结构下的共振自屏截面。对典型压水堆栅元问题、带有温度分布的栅元问题、燃料内部存在不均匀性的栅元问题以及板状燃料组件问题进行了计算。结果表明,基于特征线的超细群慢化方程求解方法可精确计算复杂几何、复杂能谱问题,为共振计算提供基准。  相似文献   

7.
为实现对复杂几何、复杂能谱组件的精细计算,提出了一种基于特征线的超细群慢化方程求解方法。通过耦合特征线法中的固定源计算,在共振能量范围内建立超细群慢化方程,通过精细能谱获得复杂结构下的共振自屏截面。对典型压水堆栅元问题、带有温度分布的栅元问题、燃料内部存在不均匀性的栅元问题以及板状燃料组件问题进行了计算。结果表明,基于特征线的超细群慢化方程求解方法可精确计算复杂几何、复杂能谱问题,为共振计算提供基准。  相似文献   

8.
超热中子计算在压水堆的物理计算中占有重要地位。本文是用蒙特卡罗方法计算压水堆燃料组件内的超热中子谱及其空间分布。在计算中,由于对燃料组件的非均匀布置和共振截面都没有作简化,因而可以得到准确度较高的计算结果。本方法考虑了燃料棒的自屏及互屏效应,可以精确地计算出丹可夫因子,避免了引进各种近似所带来的误差。  相似文献   

9.
传统的共振计算方法试图对能谱进行诸多近似和预测来实现有效共振自屏截面的计算,但传统方法存在精度与效率难以兼顾的问题。本文采用广义并群理论和降阶模型方法,挖掘复杂能谱的特征,降低共振计算的复杂程度。通过对典型背景截面的超细群能谱的提取,建立能谱样本空间。通过奇异值分解和低秩近似,有效获取代表能谱特征的正交基函数。通过求解考虑正交基函数分布权重下的宽群角通量展开系数,实现目标问题下超细群能谱的重构,并用精细能谱并群计算得到了有效共振自屏截面。初步结果表明,基于能谱降阶模型的共振计算方法能有效预测共振自屏截面,其计算效率与超细群方法相比具备一定的优势。  相似文献   

10.
共振干涉现象广泛存在于反应堆系统中,是影响共振计算精度的重要因素之一。当前提出的干涉因子方法,其计算效率难以适用于燃耗过程中的复杂燃料成分。基于改进的伪核素理论与超细群慢化方程求解程序,提出了一种针对实际压水堆燃耗过程的快速共振干涉计算方法。对于燃耗过程中的复杂燃料成分,在均匀问题和压水堆栅元几何下进行了共振自屏分析。结果表明,该方法的计算精度与严格的超细群计算及蒙特卡罗方法相当,效率上优于干涉因子方法,适用于压水堆燃耗过程中的快速共振计算。  相似文献   

11.
针对各种研究堆、实验堆以及新型反应堆中广泛应用的复杂几何燃料的共振计算难题,本文基于全局 局部耦合策略开展了可处理复杂几何燃料的等效几何共振计算方法研究。针对复杂几何燃料的孤立问题,基于燃料的逃脱概率守恒,建立了复杂几何燃料模型的等效一维圆柱(或平板)燃料模型;基于燃料到外围结构材料区的碰撞概率守恒,获得了燃料外围结构材料的等效尺寸;根据复杂几何燃料的丹可夫因子守恒,建立了等效一维圆柱(或平板)燃料外围的慢化剂尺寸;针对等效一维圆柱(或平板)燃料模型,采用伪核素子群方法进行了有效自屏截面计算。将该方法应用于非棒状几何燃料的共振计算,结果表明,该方法具有很强的几何处理能力,且具有较高的计算精度和计算效率。  相似文献   

12.
A cross section homogenization method for media containing randomly and uniformly dispersed particles, which was originally developed by Shmakov et al., has been applied to MOX fuels containing Pu-rich agglomerates. This method (Shmakov’s method), which is incorporated into a continuous-energy Monte Carlo code MCNP, has been applied to lattice calculations of an infinite MOX fuel rod array. Shmakov’s method can accurately reproduce the criticality calculation results for an explicit heterogeneous arrangement of Pu-rich agglomerates. A correction factor that Shmakov’s method defines to obtain an effective microscopic cross section provides a proper quantitative indication of the double heterogeneity of MOX fuels containing Pu-rich agglomerates. The correction factors exhibit an obvious double heterogeneity effect of Pu-rich agglomerates dispersed in MOX fuel pellets. The effective microscopic cross sections of plutonium isotopes in MOX fuels containing Pu-rich agglomerates are significantly reduced due to the self-shielding effect as compared to the homogeneous MOX fuel model. However, the double heterogeneity effect of Pu-rich agglomerates on keff seems to be unexpectedly minor because the underestimate of the reaction rates in the resonance energy range is offset by the overestimate of the reaction rates in the thermal energy range.  相似文献   

13.
In order to achieve highly accurate resonance calculations with short computation time , a new ultra-fine-group resonance calculation method is developed. The ultra-fine-group method has a limitation in practical design applications of large and complicated geometries in fuel assembly level due to its long computation time. Therefore, we developed an enhanced one-dimensional (1D) cylindrical pin-cell model to achieve both high calculation accuracy and short computation time. In the enhanced 1D cylindrical pin-cell modeling, moderator radius is adjusted to preserve each fuel pellet's Dancoff factor obtained in the exact 2D fuel lattice arrangement. We call this model the ‘equivalent Dancoff-factor’ cell model. This model can accurately consider heterogeneity effects in PWR fuel assemblies and can represent effective cross sections obtained by the ultra-fine-group calculations in the complicated 2D square lattice arrangements. The present method is implemented with Mitsubishi Heavy Industries, Ltd. lattice physics code GALAXY. From the comparisons of neutron multiplication factors and pin power distributions between GALAXY and a continuous-energy Monte Carlo code, applicability of the present method to lattice physics calculations is confirmed. Application of GALAXY with the present method achieves high accuracy with short computation time in normal operations and accident conditions including low moderator density conditions.  相似文献   

14.
The wavelets expansion method is widely used in various fields due to its powerful ability to simulate the oscillating functions. This method is applied to discretize the energy variable of neutron angular flux within the resonant energy range. Meanwhile, the conventional multi-group method is applied in fast and thermal energy ranges. This coupled method can obtain the problem-dependent continuous-energy neutron flux spectrum within the resonant energy range. The method of characteristics (MOC) is employed as a space-variable solver in this paper to keep the powerful capability of dealing with the complex geometry problems. A pressurized water reactor (PWR) fuel cell problem with UO2 fuel (UOX) and mixed oxide fuel (MOX), and a cylindrical cluster fuel problem are calculated by utilizing this coupled method. Results of these problems are all in good agreement with the results of the Monte Carlo statistical transport code MCNP. It is concluded that this is a valuable method to solve the resonance self-shielding calculation problems in a complex geometry, and it is promising to be applicable for realistic reactor problems.  相似文献   

15.
弥散颗粒型燃料的中子输运问题因其特有的随机性和双重非均匀性难以直接使用现有输运方法进行求解。Sanchez-Pomraning方法借助更新方程,对特征线方法进行改进,使其能应用于弥散颗粒型燃料的输运计算中。本文对二维圆柱形弥散颗粒燃料输运问题进行了计算,数值结果表明:程序在不同颗粒填充率、不同颗粒尺寸、燃料颗粒与毒物颗粒共存的问题下均能保证较好的计算精度,反应性特征值绝对偏差大多低于100 pcm,仅在QUADRISO毒物颗粒填充时绝对偏差达到163 pcm。本文方法能满足弥散颗粒型燃料的输运求解要求,为新型燃料的设计研究工作提供了可靠的结果。  相似文献   

16.
氟盐冷却高温堆(FHR)采用氟盐冷却球形燃料元件,其中子物理计算面临双重不均匀性问题:燃料球在堆芯内的随机排布和包覆燃料颗粒在燃料球中的随机排布。此问题是该堆型设计中面临的主要挑战之一。本文基于MCNP程序和固态燃料钍基熔盐堆(TMSR-SF1)模型完成了不同燃料球床与燃料球描述对关键中子学参数(如keff、堆芯能谱、控制棒价值和温度系数等)的影响分析。燃料球床描述使用随机序列添加(RSA)方法建立了随机球床模型与体心立方(BCC)结构的等效规则模型。包覆燃料颗粒描述则基于简立方(SC)等效模型利用MCNP程序中的URAN卡实现随机扰动。结果表明,包覆燃料颗粒随机分布的影响远小于燃料球随机分布的影响;尽管具有相同的总堆积密度,等效规则模型相比于随机球床模型会增加堆芯中子的泄漏,低估冷态满装载反应性约0.5%,高估控制棒价值约5%。  相似文献   

17.
球形燃料元件中包覆颗粒的分布效应研究   总被引:1,自引:0,他引:1  
在球形燃料元件中,包覆颗粒的填充因子低于10%,分布具有很大的随机性。本文利用MATLAB程序实现了4种填充的建模方式,即体积等效规则填充、扰动的规则填充、随机的规则填充和完全随机填充模拟燃料球中包覆颗粒的分布。基于固态燃料钍基熔盐堆(Thorium-based Molten Salt Reactor with Solid Fuel,TMSR-SF1)设计中选用的包覆颗粒燃料参数,使用蒙特卡罗程序MCNP6 1.0和ENDF/B VII.0数据库进行了全反射边界条件下的单燃料球临界计算,精确量化了不同的建模方式引起的中子物理特性参数的差异。计算表明,这4种建模方式形成了不同的包覆颗粒聚集程度。包覆颗粒的聚集会导致丹可夫效应的增强,从而增大了中子被燃料吸收的概率,无限增殖因数随之增大,燃料温度系数随之减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号