首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We report a comparative study of graphene nanoplatelets (GNPs)–epoxy nanocomposites with enhanced electrical conductive properties obtained with two different processing techniques. In the first one (TEC1), the epoxy monomer was added to a previously produced GNP–chloroform suspension and after the evaporation of the solvent, the hardener was added. In the second technique (TEC2), the hardener was added to a GNP–tetrahydrofuran suspension and after the evaporation of the solvent, the epoxy monomer was added. Although there was good dispersion of GNPs in the epoxy matrix with both techniques, the nanocomposite based on TEC1 showed a slightly better dispersion than the one based on TEC2. Electric and dielectric characterization showed that it is possible to reach the electrical percolation threshold at reasonably low GNP contents.  相似文献   

2.
采用熔融共混法制备BN纤维-石墨烯微片/聚丙烯(BN纤维-GNP/PP)高导热绝缘复合材料,结合有限元模拟、SEM、XRD、导热导电测试结果,探究了BN纤维含量和长度对BN纤维-GNP/PP复合材料导热绝缘性能的影响。结果表明:BN纤维-GNP/PP复合材料中BN纤维含量和长度的增加可增大GNP分布范围,增大BN纤维与GNP的接触概率;在GNP含量为7wt%、100 μm BN纤维含量为20wt%时BN纤维-GNP/PP复合材料的热导率较PP提高了4.2倍,同时电绝缘性略有提高。模拟结果表明,高含量100 μm BN纤维的加入使BN纤维-GNP/PP复合材料导热网络的构建趋于完整,局部热通量较低的区域减少。片状GNP与纤维状BN二相填料的"协同效应",使GNP和BN纤维分别作为"岛"和"桥"形成了一种特殊的"双网络"结构,BN纤维作为高导热"桥"阻隔了相邻GNP间导电通路的形成,从而提高了BN纤维-GNP/PP复合材料的导热绝缘性能。   相似文献   

3.
Ultra-high molecular weight polyethylene (UHMWPE)-based conductive nanocomposites with reduced percolation and tunable piezoresistive behavior were prepared via solution mixing followed by compression molding using carbon nanotubes (CNT) and graphene nanoplatelets (GNP). The effect of varying wt% of GNP with fixed CNT content (0.1 wt%) on the mechanical, electrical, thermal and piezoresistive properties of UHMWPE nanocomposites was evaluated. The combination of CNT and GNP enhanced the dispersion in UHMWPE matrix and lowered the probability of CNT aggregation as GNP acted as a spacer to separate the entanglement of CNT with each other. This has allowed the formation of an effective conductive path between GNP and CNT in UHMWPE matrix. The thermal conductivity, degree of crystallinity and degradation temperature of the nanocomposites increased with increasing GNP content. The elastic modulus and yield strength of the nanocomposites were improved by 37% and 33%, respectively, for 0.1/0.3 wt% of CNT/GNP compared to neat UHMWPE. The electrical conductivity was measured using four-probe method, and the lowest electrical percolation threshold was achieved at 0.1/0.1 wt% of CNT/GNP forming a nearly two-dimensional conductive network (critical value, t = 1.20). Such improvements in mechanical and electrical properties are attributed to the synergistic effect of the two-dimensional GNP and one-dimensional CNT which limits aggregation of CNTs enabling a more efficient conductive network at low wt% of fillers. These hybrid nanocomposites exhibited strong piezoresistive response with sensitivity factor of 6.2, 15.93 and 557.44 in the linear elastic, inelastic I and inelastic II regimes, respectively, for 0.1/0.5 wt% of CNT/GNP. This study demonstrates the fabrication method and the self-sensing performance of CNT/GNP/UHMWPE nanocomposites with improved properties useful for orthopedic implants.  相似文献   

4.
A small quantity of carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) were introduced into the poly(vinylidene fluoride) (PVDF)/GNP and PVDF/CNT composites, respectively, to prepare the corresponding ternary PVDF/CNT/GNP and PVDF/GNP/CNT composites. The results demonstrated that adding CNTs into the PVDF/GNP composites greatly promoted the formation of the hybrid network structure of fillers. This was much different from the scenario that adding GNPs into the PVDF/CNT composites. GNPs and CNTs exhibited excellent nucleation effects for the crystallization of PVDF matrix; however, the variation of the PVDF crystallinity was small. Adding CNTs into the PVDF/GNP composites greatly enhanced the electrical conductivity of the PVDF/CNT/GNP composites. This was also different from the scenario of the PVDF/GNP/CNT composites. Furthermore, the PVDF/CNT/GNP composites exhibit higher thermal conductivity and higher synergistic efficiency compared with the PVDF/GNP/CNT composites. The conductive mechanisms and the synergistic effects of the ternary composites were then analyzed.  相似文献   

5.
Graphene nanoplatelets (GNPs)/ultra-high molecular weight polyethylene (UHMWPE) composites with a segregated structure had been fabricated using ethanol-assisted dispersion and hot compression at 180 °C. A percolation threshold of 3.5 wt% was achieved because of the formation conductive network. The positive temperature coefficient (PTC) and the negative temperature coefficient (NTC) effects of GNPs/UHMWPE composites had been investigated. The PTC behavior enhanced with increasing GNPs content but this was not always the case. The maximum PTC effect was observed in GNPs/UHMWPE composites (GNPs, 3.8 wt%) with the relatively low room temperature resistivity and the relatively high peak resistivity. The structure for GNPs/UHMWPE composites was examined by the SEM. The fact revealed that the slight interaction between GNPs and UHMWPE matrix may be changed by thermal cycles, and this can explain why thermal cycles could increase PTC and NTC intensity.  相似文献   

6.
Graphene nanoplatelets (GNPs) are recently developed nanoparticles that are formed by stacks of short disk-like layers of graphite. They cost considerably less than their carbon nanotubes (CNTs) counterparts, and can be potentially used to generate multi-functional material systems. However, there are significant number of structural differences between GNPs and CNTs. It is therefore timely to review and optimize the current processing techniques used for generating GNP-nanocomposites. In this research, a scalable shear mixing approach (i.e., a three-roll mill) is utilized for achieving uniform dispersion of different fractions of GNPs in an epoxy resin. Then, the stiffness, electrical and thermal conductivity, and linear coefficient of thermal expansion of the resulting nanocomposites were evaluated. The as-processed nanocomposites exhibited significant improvement in their thermal properties, but a moderate increase in stiffness. The electrical percolation threshold of the nanocomposite occurred at higher concentration of GNP than that predicted by the available micromechanical models. This is attributed to the change in size of GNPs, which occurs as a result of manufacturing process, as observed by scanning electron microscopy.  相似文献   

7.
Graphene nanoplatelets (GNPs) were used as multifunctional nanofiller to enhance thermal and mechanical properties as well as electrical conductivity of two different biodegradable thermoplastics: poly lactide (PLA) and poly (butylene adipate-co-terephthalate) (PBAT). Morphological investigations showed different levels of GNP dispersion in the two matrices, and consequently physical properties of the two systems exhibited dissimilar behaviours with GNP incorporation. Crystallinity of PLA, determined from differential scanning calorimetry, was observed to increase markedly with addition of GNPs in contrast to the decrease in crystallinity of PBAT. Isothermal and non-isothermal thermogravimetric analyses also revealed a more significant delay in thermal decomposition of PLA upon addition of GNPs compared to that of PBAT. Furthermore, results showed that increasing GNP content of PLA and PBAT nanocomposites influenced their Young’s modulus and electrical conductivity in different ways. Modulus of PBAT increased continuously with increasing GNP loading while that of PLA reached a maximum at 9 wt% GNPs and then decreased. Moreover, despite the higher conductivity of pure PBAT compared to pure PLA, conductivity of PLA/GNP nanocomposites overtook that of PBAT/GNP nanocomposites above a certain GNP concentration. This demonstrated the determining effect of nanoplatelets dispersion state on the matrices properties.  相似文献   

8.
为在较低的导热填料含量下提高环氧树脂(EP)的热导率,通过溶液法制备了石墨烯纳米片/(酚酞聚芳醚酮-EP) (GNP/(PEK-C-EP))复合材料。基于接触角测量计算并预测了GNP的选择性分布,并通过SEM和激光闪光法研究了GNP和PEK-C含量对GNP/(PEK-C-EP)复合材料的微观结构和热导率的影响。结果表明,当PEK-C的含量为20wt%时,GNP选择性分布在PEK-C中,形成了双逾渗结构的GNP/(PEK-C-EP)复合材料,从而构建了连续导热通道。当GNP含量为1wt%时,GNP/EP复合材料导热率最高达0.375 W(m·K)?1。当GNP含量为0.5wt%时,GNP/(PEK-C-EP)复合材料导热率最高达0.371 W(m·K)?1,较GNP含量为0.5wt%的GNP/EP复合材料热导率高48%,与GNP含量为1wt%的GNP/EP复合材料的热导率基本相同。表明GNP/(PEK-C-EP)复合材料的填料量减少了50%,利用双逾渗效应可以有效减少导热填料用量。此外,比较了纯EP和GNP/(PEK-C-EP)复合材料的玻璃化转变温度、热稳定性和热膨胀系数,结果表明,GNP/(PEK-C-EP)复合材料的热性能优于纯EP。   相似文献   

9.
This research concerns the effect of conductive network formation in a polymer melt on the conductivity of multi-walled carbon nanotube/thermoplastic polyurethane composite systems. An extremely low percolation threshold of 0.13 wt.% was achieved in hot-pressed composite film samples, whereas a much higher CNT concentration (3–4 wt.%) is needed to form a conductive network in extruded composite strands. This is explained in terms of the dynamic percolation behaviour of the CNT network in the polymer melt. The temperature and CNT concentration needed for dynamic percolation to take effect were studied by the conductivity versus temperature behaviour of extruded strands, in an attempt to optimise the processing conditions.  相似文献   

10.
Review on polymer/graphite nanoplatelet nanocomposites   总被引:1,自引:0,他引:1  
Graphite nanoplatelets (GNPs) are a type of graphitic nanofillers composed of stacked 2D graphene sheets, having outstanding electrical, thermal, and mechanical properties. Furthermore, owing to the abundance of naturally existing graphite as the source material for GNPs, it is considered an ideal reinforcing component to modify the properties of polymers. The 2D confinement of GNPs to the polymer matrix and the high surface area make the GNP a distinctive nanofiller, showing superiorities in modification of most properties, compared with other carbon nanofillers. This review will summarize the development of polymer/GNP nanocomposites in recent years, including the fabrication of GNPs and its nanocomposites, processing issues, viscoelastic properties, mechanical properties, electrical and dielectric properties, thermal conductivity and thermal stability. The discussion of reinforcing effect will be based on dispersion, particle geometry, concentrations, as well as the 2D structures and exfoliation of GNPs. The synergy of GNPs with other types of carbon nanofillers used as hybrid reinforcing systems shows great potential and could significantly broaden the application of GNPs. The relevant research will also be included in this review.  相似文献   

11.
Graphite nanoplatelets (GNP)/silicone composites are potential thermal interface materials due to their high thermal conductivity and compliance. In this study, performance as thermal interface materials is studied by measuring thermal contact resistance. The effect of surface roughness, particle size of GNPs, wt% GNPs, temperature and applied pressure on the thermal contact resistance of the composite coatings was determined. The GNP/silicone coating performed much better on rough surfaces than on smooth surfaces. The composite coating consisting of large GNPs is more effective than small GNPs probably due to the two times higher thermal conductivity of the former. The thermal contact resistance of the GNP/silicone composite increased by ~3–10% with an increase of temperature but remained unaffected by an increase of pressure. The comparison of GNP/silicone composite coatings with GNP-based thermal pastes showed that the former perform much better in thick bond lines.  相似文献   

12.
通过熔融共混法制备了两种不同型号石墨烯微片(GNPs)填加的GNPs/聚丙烯(PP)导热复合材料,研究了GNPs型号(KNG180,KNG150)和含量对其导热性能、密度、结晶性能和热稳定性能的影响。结果表明,KNG180 GNPs/PP复合材料密度高于KNG150 GNPs/PP,同时KNG180对提高聚丙烯结晶度的效果优于KNG150。随着石墨烯微片含量的增加,两种复合材料导热系数均明显增大,而且KNG180填充的复合材料导热性能明显优于KNG150;当KNG180的添加量为60%(质量分数)时,GNPs/PP复合材料的导热系数从纯聚丙烯的0.087 W/(m·K)提高到1.32 W/(m·K),提高了14倍多。石墨烯微片的加入显著提高了聚丙烯的热稳定性,当KNG180或KNG150的质量分数为10%时,聚丙烯达到最大热失重速率时的温度从345.1 ℃分别提高到374.6 ℃和397.9 ℃,但是当石墨烯微片超过一定含量时,热稳定性会下降。  相似文献   

13.
在挤出过程加入超声振动作用,研究超声振动对高石墨烯微片(GNP)含量的聚丙烯基(GNP/PP)复合材料微观形态、结晶、导电性和导热性的影响。结果表明:由于超声振动提供强烈的冲击波与微射流,挤出过程中加入超声振动可有效地减薄GNP片层厚度,减少GNP团聚,增强GNP在PP中的分散均匀性,有利于构建导电导热网络,从而提高GNP/PP纳米复合材料的导电导热性能。相较于无超声振动,加入100 W超声振动后,GNP含量越高,GNP/PP电导率和热导率提升幅度越大,在GNP含量为15wt%时,电导率升幅为85%,热导率升幅为9.7%。而在GNP含量同为12wt%时,随着超声振动功率的增加,电导率和热导率呈现先增大后减少的规律。当超声功率为200 W时,电导率升幅为214%,热导率升幅为17.2%。而超声功率达到300 W时,较高功率的超声振动使部分石墨烯微片的片径减少,导致片层间更难以搭建完整的导电导热网络,使GNP/PP性能均略有下降。  相似文献   

14.
An easy process for the synthesis of polyaniline/graphite nanosheets (PANI/NanoG) composites was developed. NanoG were prepared by treating the expanded graphite with sonication in aqueous alcohol solution. Scanning electron microscopy (SEM), X-ray diffraction techniques (XRD), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) were used to characterize the structures of NanoG and PANI/NanoG conducting composites. Electrical conductivity measurements indicated that the percolation threshold of PANI/NanoG composites at room temperature was as low as 0.32 vol.% and the conductivity of PANI/NanoG composites was 420 S/cm. The percolation theory, mean-field theory, and excluded volume theory were applied to interpret the conducting properties. Results showed that the low value of percolation threshold may be mainly attributed to nanoscale structure of NanoG forming conducting bridge in PANI matrix and there exists contact resistance in the percolation network formed within PANI/NanoG composites.  相似文献   

15.
填充型聚合物基复合材料的导电和导热性能   总被引:7,自引:0,他引:7  
研究了高密度聚乙烯为基体、炭黑和炭纤维为填料复合体系的导电和导热性能。发现当导电填料的含量达到渗流阈值时,复合材料的电导率急剧升高;而在渗流阈值附近,其热导率未出现突变。这表明电导渗流现象不完全是由导电粒子通过物理接触生成导电链所致。其导电机制是相当数量的导电粒子相互发生隧道效应。  相似文献   

16.
Conducting carbon black (CB), one of the intrinsic semi-conductors, was added into matrix polypropylene (PP) to prepare conducting composites by means of the melt processing method. Another component EVA was mixed into the composites in order to lower the percolation threshold. The percolation threshold of the ternary CB/PP/EVA composites was merely 3.8 vol%, while it was up to 7.8 vol% for the binary CB/PP composites without EVA. The conductivity of the ternary CB/PP/EVA composites was up to 10–2 S/cm when the CB percentage was 5 vol%, while that of the binary CB/PP was lower than 10–2 S/cm when the CB percentage was up to 10 vol%. DSC thermograms of the CB/PP/EVA composites showed that the melting peak shifted to low temperature with increasing CB content. The addition of CB and EVA resulted in the decrease of the crystallinity of PP in the ternary composites. The mechanical properties are also discussed. SEM and TEM were employed to study the morphology of the blend system. The results indicated that CB existed in the form of aggregations in the blend system. The smallest unit that formed a percolation network was grape-like aggregates with some small branches, which consisted of some CB particles, rather than the individual particles. This distribution was very valuable for forming conducting paths and for lowering the percolation value.  相似文献   

17.
Polymer/carbon nanotubes nanocomposites were fabricated by an in situ polymerization process using multi-wall carbon nanotubes (MWNT) as filler in an epoxy polymer. Effects of curing process, mixing speed, mixing time, addition of ethanol, timing of hardener addition, etc., in the fabrication process on the electrical properties of nanocomposites have been investigated. In the fabrication process, the effective formation of macroscopic conducting network in matrix is most important to enhance the electrical properties of nanocomposites. It was found that the curing temperature and the mixing conditions are key factors in the fabrication process, which influence the formation of conducting network significantly. Therefore, careful design of these factors in the fabrication process is required to achieve high electrical performances of nanocomposites. The experimental percolation threshold of the resultant nanocomposites was around 0.1 wt%. Moreover, a statistical percolation model was built up to numerically investigate the percolation threshold. The experimental electrical conductivity increases from the percolation threshold following a percolation-like power law with the identified critical exponent t as 1.75.  相似文献   

18.
采用化学镀手段制备金属镍包覆的超高分子量聚乙烯复合粒子,通过热压成型方法制得具有隔离结构的超高分子量聚乙烯(UHMWPE)/镍(Ni)高导电复合材料。通过调节金属(镍)镀层厚度及加工温度考察不同Ni含量及加工温度对复合材料导电性能的影响。结果表明,复合材料具有明显的导电逾渗行为;通过化学镀工艺可有效提高金属填料与基体的结合力,同时实现金属镍在聚合物基体中的选择性稳定分布,构建具有隔离结构的导电网络,使得复合材料的逾渗值降低至1.02%(体积分数)。基于金属填料优异的导电性能,在Ni体积分数仅为2.53%时,复合材料的电导率达到2648S/m。此外,降低复合材料的加工成型温度有助于减少加工过程对导电网络的破坏作用,从而有效降低复合材料的导电逾渗值,对提高复合材料导电性能具有重要意义。  相似文献   

19.
为了比较超高分子量聚乙烯(UHMWPE)在单一填充和混合填充时, 复合材料导电性的差别。在超声和肼的作用下, 通过对氧化石墨烯(GO)、 多壁碳纳米管(MWCNTs)和超高分子量聚乙烯水/乙醇分散液减压蒸馏及热压制备了隔离型MWCNTs/UHMWPE、 石墨烯(GNS)/UHMWPE和MWCNTs-GNS/UHMWPE导电复合材料。经SEM、 TEM测试发现, 导电填料分散于UHMWPE颗粒表面, 热压后形成隔离结构。隔离型的MWCNTs/UHMWPE和GNS/UHMWPE复合材料均表现出较低的导电逾渗(0.148%和0.059%, 体积分数,下同), 但MWCNTs/UHMWPE复合材料的电导率(2.0×10-2 S/m, 1.0%, 质量分数, 下同)明显高于相同填料含量下的GNS/UHMWPE复合材料。 MWCNTs-GNS/UHMWPE复合材料表现出了更低的逾渗(0.039%) 和较高导电性能(1.0×10-2 S/m, 1.0%), 其拉伸强度和断裂伸长率随填充剂含量的增加呈现出先上升后下降的趋势。  相似文献   

20.
PANI-DBSA/PAN导电薄膜的结构与性能   总被引:1,自引:0,他引:1  
首先由乳液聚合制备十二烷基苯磺酸(DBSA)掺杂的可溶性聚苯胺(PANI),然后以三氮甲烷/二甲基亚砜(DMSO)为混合溶剂,采用溶液共混的方法制备聚苯胺/聚丙烯腈(PAN)导电薄膜。对导电薄膜进行了导电性能测试、扫描电镜分析(SEM)、红外光谱(FT-IR)及广角X射线衍射分析.结果表明,PANI-DBSA/PAN共混体系的导电逾渗阈值低于4%;在较低的PANI含量时。聚苯胺在膜中央和皮层的分布形态不同。导电网络首先在皮层形成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号