首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hypoxia impairs metabolic functions by decreasing activity and expression of ATP-consuming processes. To separate hypoxia from systemic effects, we tested whether hypoxia at high altitude affects basal and PMA-stimulated leukocyte metabolism and how this compares to acute (15 min) and 24 h of in vitro hypoxia. Leukocytes were prepared at low altitude and ~24 h after arrival at 4559 m. Mitochondrial oxygen consumption (JO?) was measured by respirometry, oxygen radicals by electron spin resonance spectroscopy, both at a Po? = 100 mmHg (JO?,???) and 20 mmHg (JO?,??). Acute hypoxia of leukocytes decreased JO? at low altitude. Exposure to high altitude decreased JO?,???, whereas JO?,?? was not affected. Acute hypoxia of low-altitude samples decreased the activity of complexes I, II, and III. At high altitude, activity of complexes I and III were decreased when measured in normoxia. Stimulation of leukocytes with PMA increased JO?,??? at low (twofold) and high altitude (five-fold). At both locations, PMA-stimulated JO? was decreased by acute hypoxia. Basal and PMA-stimulated reactive oxygen species (ROS) production were unchanged at high altitude. Separate in vitro experiments performed at low altitude show that ~75% of PMA-induced increase in JO? was due to increased extra-mitochondrial JO? (JO?(,res); in the presence of rotenone and antimycin A). JO?(,res) was doubled by PMA. Acute hypoxia decreased basal JO?(,res) by ~70% and PMA-stimulated JO?(,res) by about 50% in cells cultured in normoxia and hypoxia (1.5% O?; 24 h). Conversely, 24 h in vitro hypoxia decreased mitochondrial JO?,??? and JO?,??, extra-mitochondrial, basal, and PMA-stimulated JO? were not affected. These results show that 24 h of high altitude but not 24 h in vitro hypoxia decreased basal leukocyte metabolism, whereas PMA-induced JO? and ROS formation were not affected, indicating that prolonged high-altitude hypoxia impairs mitochondrial metabolism but does not impair respiratory burst. In contrast, acute hypoxia impairs respiratory burst at either altitude.  相似文献   

2.
While bar-headed geese are renowned for migration at high altitude over the Himalayas, previous work on captive birds suggested that these geese are unable to maintain rates of oxygen consumption while running in severely hypoxic conditions. To investigate this paradox, we re-examined the running performance and heart rates of bar-headed geese and barnacle geese (a low altitude species) during exercise in hypoxia. Bar-headed geese (n = 7) were able to run at maximum speeds (determined in normoxia) for 15 minutes in severe hypoxia (7% O2; simulating the hypoxia at 8500 m) with mean heart rates of 466±8 beats min−1. Barnacle geese (n = 10), on the other hand, were unable to complete similar trials in severe hypoxia and their mean heart rate (316 beats.min−1) was significantly lower than bar-headed geese. In bar-headed geese, partial pressures of oxygen and carbon dioxide in both arterial and mixed venous blood were significantly lower during hypoxia than normoxia, both at rest and while running. However, measurements of blood lactate in bar-headed geese suggested that anaerobic metabolism was not a major energy source during running in hypoxia. We combined these data with values taken from the literature to estimate (i) oxygen supply, using the Fick equation and (ii) oxygen demand using aerodynamic theory for bar-headed geese flying aerobically, and under their own power, at altitude. This analysis predicts that the maximum altitude at which geese can transport enough oxygen to fly without environmental assistance ranges from 6,800 m to 8,900 m altitude, depending on the parameters used in the model but that such flights should be rare.  相似文献   

3.
Altitude hypoxia does not induce any changes in the enzymatic systems related to oxygen consumption in guinea pigs native of the Peruvian high altitudes. The biochemical changes frequently found in high altitude animals are the result of exposure to the low temperature of this environment rather than to hypoxia. In the present work, mice were chronically exposed to hypobaric hypoxia and maintained at equal temperature as the sea level control group, and measurements of enzymatic activities of the three major oxygen consuming systems of the liver were carried out, i.e., mitochondria, microsomes and peroxisomes. The results obtained have confirmed that hypoxia has no apparent influence on these enzymatic systems.  相似文献   

4.
In deer mouse (Peromyscus maniculatus) populations in the western United States, alpha-globin haplotype frequency, beta-globin haplotype frequency, and base-line blood oxygen affinity (measured after acclimation to low altitude) show strong correlations with native altitude. The correlations improve when an average regional altitude is substituted for the local altitude at collection sites. This substitution roughly compensates for the effects of gene exchange between populations in areas of highly variable topography. When subspecific effects are removed with covariate analyses a significant (P < 0.05) relationship remains only for alpha-globin haplotype frequency and altitude. Thus, alpha-globin haplotype frequency, beta-globin haplotype frequency, and base-line blood oxygen affinity may be explained by either subspecific or altitudinal effects, but subspecific effects explain a larger proportion of the variance. Part of the subspecific effect may be attributable to an underlying relationship of subspecies with altitude. The analyses for the alpha-globins in conjunction with other data on the effects of alpha-globins on blood oxygen affinity and whole-animal physiological performance are consistent with the hypothesis that the frequency of the alpha-globins evolved in response to selection resulting from the stress of high-altitude hypoxia.  相似文献   

5.
We characterized 26 wild fruit flies comparative population genomics from six different altitude and latitude locations by whole genome resequencing. Genetic diversity was relatively higher in Ganzi and Chongqing populations. We also found 13 genes showing selection signature between different altitude flies and variants related to hypoxia and temperature stimulus, were preferentially selected during the flies evolution. One of the most striking selective sweeps found in all high altitude flies occurred in the region harboring Hsp70Aa and Hsp70Ab on chromosome 3R. Interestingly, these two genes are involved in GO terms including response to hypoxia, unfolded protein, temperature stimulus, heat, oxygen levels. Mutation in HPH gene, a candidate gene in the hypoxia inducible factor pathway, might contributes to hypoxic high-altitude adaptation. Intriguingly, some of the selected genes, primarily utilized in humans, were involved in the response to hypoxia, which could imply a conserved molecular mechanisms underlying high-altitude adaptation between insects and humans.  相似文献   

6.
Hypoxia (oxygen deprivation) is known to be associated with deep vein thrombosis and venous thromboembolism. We attempted to get a better comprehension of its mechanism by going to high altitude, thereby including the potential contributing role of physical activity. Two groups of 15 healthy individuals were exposed to hypoxia by going to an altitude of 3900 meters, either by climbing actively (active group) or transported passively by cable car (passive group). Both groups were tested for plasma fibrinogen, von Willebrand factor and factor VIII levels, fibrinolysis, thrombin generating capacity, heart rate, oxygen saturation levels and blood pressure. As a control for the passive group, 7 healthy volunteers stayed immobile in bed for 7 days at normoxic conditions. The heart rate increased and oxygen saturation levels decreased with increasing altitude. Fibrinolysis and fibrinogen levels were not affected. Factor VIII and von Willebrand factor levels levels increased significantly in the active group, but not in the passive group. Plasma thrombin generation remained unchanged in both the active and passive group with increasing altitude and during 7 days of immobility in healthy subjects. However, by applying whole blood thrombin generation, we found an increased peak height and endogenous thrombin potential, and a decreased lagtime and time-to-peak with increasing levels of hypoxia in both groups. In conclusion, by applying whole blood thrombin generation we demonstrated that hypoxia causes a prothrombotic state. As thrombin generation in plasma did not increase, our results suggest that the cellular part of the blood is involved in the prothrombotic phenotype induced by hypoxia.  相似文献   

7.
The respiratory sensation and some routine cardiorespiratory parameters were studied on native Highlanders from the Argentine Andes and on Lowlanders from Europe, already tested during previous high altitude expeditions. The tests were performed at various altitude levels from 2688m e.i., the village altitude for Highlanders, to 5600m during an expedition to Mt. Aconcagua (6990m). At rest, the perception of 4 external inspiratory resistive loads (ranged between 2.5 and 13 cm.H2O.L-1.s) can allow us to fix by discrimination the sensitivity index P(A) independently of response bias (B) according to Sensory Decision Theory (SDT). The Andean highlanders did not experience the respiratory sensation at the same limits as the European lowlanders well adaptated to high altitude. At higher altitudes than their village altitude, their respiratory sensation presented a lower threshold of perception and a weaker discrimination which might be partly explained by the evolution of some parameters of their cardio-respiratory function when altitude increased. Indeed, in response to high altitude hypoxia (5600m), they increased their respiratory frequency and not their minuteventilation or mouth pressure. This chosen ventilatory pattern was opposite to the one chosen by the Lowlanders and did not allow for sufficient adaptation to a more important altitude hypoxia than that of their village altitude. In conclusion, the Andean highlanders wellbeing adapted to their village altitude, exhibited a difficult acclimatization to higher altitudes which might be due to the characteristics of their respiratory sensation. These results might explain their weak physical performances during ascent to the Mt. Aconcagua summit in spite of special training.  相似文献   

8.
Effects of hypoxia on resting oxygen consumption (MO2), lung ventilation, and heart rate at different ambient PO2 were compared between lowland and high altitude populations of the toad, Bufo bankorensis. Resting MO2 decreased significantly in mild hypoxia (PO2 = 120 mm Hg) at 10 degrees C and in moderate hypoxia (PO2 = 80 mm Hg) at 25 degrees C in both altitudinal populations; however, resting MO2 did not differ significantly between the two populations. Numbers of lung ventilation periods (VP) and total inspired volume (VL) did not change with PO2 at 10 degrees C, but did increase at moderate and severe hypoxia (40 mm Hg), respectively, at 25 degrees C. Resting heart rates did not change during hypoxia and did not differ between altitude populations. The results suggest (1) the effect of PO2 change on MO2 should be considered in future studies involving transfer of anurans to a different altitude; and (2) the metabolic and ventilatory physiology in B. bankorensis does not compensate for the low temperature and PO2 at high altitude.  相似文献   

9.
Human pathophysiology of high altitude hypoxic brain injury is not well understood and research on the underlying mechanisms is hampered by the lack of well-characterized animal models. In this study, we explored the evolution of brain injury by magnetic resonance imaging (MRI) and histological methods in mice exposed to normobaric hypoxia at 8% oxygen for 48 hours followed by rapid reoxygenation and incubation for further 24 h under normoxic conditions. T2*-, diffusion-weighted and T2-relaxometry MRI was performed before exposure, immediately after 48 hours of hypoxia and 24 hours after reoxygenation. Cerebral microhemorrhages, previously described in humans suffering from severe high altitude cerebral edema, were also detected in mice upon hypoxia-reoxygenation with a strong region-specific clustering in the olfactory bulb, and to a lesser extent, in the basal ganglia and cerebral white matter. The number of microhemorrhages determined immediately after hypoxia was low, but strongly increased 24 hours upon onset of reoxygenation. Histologically verified microhemorrhages were exclusively located around cerebral microvessels with disrupted interendothelial tight junction protein ZO-1. In contrast, quantitative T2 and apparent-diffusion-coefficient values immediately after hypoxia and after 24 hours of reoxygenation did not show any region-specific alteration, consistent with subtle multifocal but not with regional or global brain edema.  相似文献   

10.
为了探讨急性低氧时藏系绵羊(Ovis aries)的血气特点,揭示其低氧适应机制,将7只雄性藏系绵羊和5只雄性移居绵羊分别置于高低压氧舱内,测定模拟海拔0、2 300和4 500 m时各动物清醒状态下的血气指标。用热稀释法测定心输出量。使用血气分析仪和EG7血样板,测定动脉及混合静脉血的血气指标,按Ficks方法计算氧耗量。结果显示,随着模拟海拔高度的升高,藏羊和移居羊的动静脉血氧饱和度(So2)、氧分压(Po2)、二氧化碳分压(Pco2)都呈明显下降趋势(P<0.05),血红蛋白浓度(Hb)、血液pH、心输出量及氧耗量虽无明显的差异性改变,但它们在4 500 m处的绝对值是增加的。在相同海拔,藏羊的Hb明显低于移居羊(P<0.05),4 500 m时藏羊的动脉血氧饱和度(Sao2)及组织摄氧量显著高于移居羊(P<0.05)。表明藏羊在急性低氧时表现出的高Sao2及高组织摄氧量,低Hb、低pH是它适应高原低氧的生理基础。  相似文献   

11.
Abstract

Demographic studies undertaken in several Andean countries have found that women residing at high altitudes have significantly fewer live births than do their low altitude counterparts. This reduction has been explained as being due to various factors: the debilitating effects of hypoxia upon the reproductive system; the effects of sociocultural factors which vary with altitude and which affect reproductive behavior; and errors in data collection. In order to examine the validity of some of these hypotheses, the fertility of a group of 906 Bolivian women residing at low, medium, and high altitudes was examined. The women were selected from the lower socioeconomic strata and reported never having used any method of contraception. A detailed analysis of the fertility of these women showed no significant altitude‐related differences in the number of live births. However, as a result of significantly higher childhood mortality rates at altitude, there was a significant reduction in numbers of living children. The results of this study suggest that the collection and analysis of census data that ignores socioeconomic differences within a population or differences among census units in neonatal or early childhood mortality may bias or complicate the study of the impact of altitude on human fertility. Although the present research does not prove that hypoxic stress does not affect the reproductive system, the results suggest that if altitude does reduce fecundity, the reduction is not great and is likely to be shown only through studies of reproductive physiology.  相似文献   

12.
目的:探讨藏羚羊骨骼肌对低氧环境的适应机制。方法:以生活在同海拔高度(4 300 m)的藏绵羊和低海拔绵羊(1 800 m)为对照,用分光光度法测定三种动物骨骼肌中肌红蛋白(Mb)含量、乳酸(LA)含量,酶活力法测定三种动物骨骼肌中乳酸脱氢酶(LDH)和苹果酸脱氢酶(MDH)活力。结果:藏羚羊骨骼肌中Mb含量明显高于藏绵羊和低海拔绵羊(P<0.05),而藏绵羊和低海拔绵羊间无明显差异。LA含量和LDH活力明显低于藏绵羊和低海拔绵羊(P<0.05),而MDH活力及MDH/LDH比值显著高于藏绵羊和低海拔绵羊(P<0.05),藏绵羊和低海拔绵羊间无明显差异。结论:藏羚羊可能通过增加骨骼肌中Mb的含量,提高其在低氧环境获取氧的能力,且藏羚羊骨骼肌组织中有氧代谢比例高,这可能与肌肉中Mb含量较高有关,推测藏羚羊较高的Mb含量可能是其适应高原缺氧条件的分子基础之一。  相似文献   

13.
The effects of hypoxia on the avian cardiovascular system are reviewed. The avian cardiovascular system seems well adapted to deal with the stress of hypoxia. In general, birds are remarkably tolerant of hypoxia, with some species being capable of performing vigorous exercise at extreme altitude. During hypoxia at rest, the circulation maintains arterial pressure, increases cardiac output, and redistributes blood flow so oxygen delivery to the heart and brain is maintained. During exercise, further adjustments are required, since exercising muscle has large oxygen requirements. The mechanisms responsible for producing these circulatory changes are largely unknown. The transport steps that limit O2 delivery during hypoxia are also poorly understood.  相似文献   

14.

Background

Herba Rhodiolae is a traditional Chinese medicine used by the Tibetan people for treating hypoxia related diseases such as anxiety. Based on the previous work, we developed and patented an anti-anxiety herbal formula Fu Fang Jin Jing Oral Liquid (FJJOL) with Herba Rhodiolae as a chief ingredient. In this study, the anti-hypoxia and anti-anxiety effects of FJJOL in a high altitude forced-swimming mouse model with anxiety symptoms will be elucidated by NMR-based metabolomics.

Methods

In our experiments, the mice were divided randomly into four groups as flatland group, high altitude saline-treated group, high altitude FJJOL-treated group, and high altitude diazepam-treated group. To cause anxiety effects and hypoxic defects, a combination use of oxygen level decreasing (hypobaric cabin) and oxygen consumption increasing (exhaustive swimming) were applied to mice. After a three-day experimental handling, aqueous metabolites of mouse brain tissues were extracted and then subjected to NMR analysis. The therapeutic effects of FJJOL on the hypobaric hypoxia mice with anxiety symptoms were verified.

Results

Upon hypoxic exposure, both energy metabolism defects and disorders of functional metabolites in brain tissues of mice were observed. PCA, PLS-DA and OPLS-DA scatter plots revealed a clear group clustering for metabolic profiles in the hypoxia versus normoxia samples. After a three-day treatment with FJJOL, significant rescue effects on energy metabolism were detected, and levels of ATP, fumarate, malate and lactate in brain tissues of hypoxic mice recovered. Meanwhile, FJJOL also up-regulated the neurotransmitter GABA, and the improvement of anxiety symptoms was highly related to this effect.

Conclusions

FJJOL ameliorated hypobaric hypoxia effects by regulating energy metabolism, choline metabolism, and improving the symptoms of anxiety. The anti-anxiety therapeutic effects of FJJOL were comparable to the conventional anti-anxiety drug diazepam on the hypobaric hypoxia mice. FJJOL might serve as an alternative therapy for the hypoxia and anxiety disorders.  相似文献   

15.
Intermittent high altitude hypoxia (8 hours a day, 5 days a week, stepwise up to the altitude of 7000 m, total number of exposures 24) induced in male and female rats, chronic pulmonary hypertension and right ventricular hypertrophy. No significant sex differences were found in both these parameters. A significant sex difference was demonstrated in the resistance of the cardiac muscle to acute anoxia in vitro: the myocardium of control female rats proved to be significantly more resistant to oxygen deficiency. Intermittent altitude hypoxia resulted in significantly enhanced resistance in both sexes, yet the sex difference was maintained. Sex differences were further observed in the growth response of experimental animals to the acclimatization process. Whereas the body weight of male rats exposed to intermittent altitude hypoxia was significantly lower, hypoxic females had body weights comparable to those of control animals.  相似文献   

16.
Newborn mammals exhibit a number of physiological reactions which differ from normal adult physiology and are often regarded as signs of immaturity. However, when looked upon from a comparative point of view, it becomes obvious that some of these 'physiological peculiarities' bear striking similarity to adaptation mechanisms known from hypoxia-tolerant animals and may thus contribute to the well-established, yet poorly understood, phenomenon of neonatal hypoxia tolerance. As the mammalian fetus lives at oxygen partial pressures corresponding to 8000 m altitude, the first line of perinatal hypoxia defense consists of long-term adaptations to limited intrauterine oxygen supply: (1) improved O2 transport by fetal acclimatization to high altitude, (2) reduced metabolic rate by hibernation-like deviation from metabolic size allometry, (3) diminished cerebral vulnerability by functional analogies to diving turtle brain, and (4) enhanced metabolic flexibility by optional repartitioning of energy supply from growth to maintenance metabolism. In the case of birth asphyxia, these background mechanisms are complemented by short-term responses to acute oxygen lack: (1) reduction of body temperature as in natural torpor, (2) reduction of heart rate and redistribution of circulation as in diving mammals, (3) reduction of respiration rate typical of 'hypoxic hypometabolism', and (4) reduction of blood pH according to the concept of 'acidotic torpidity'. Although anaerobic metabolism is improved in neonatal mammals by increased glycogen stores, reduced metabolic demands, and sustained wash-out of acid metabolites, neonatal hypoxia tolerance seems to be primarily based on the ability to maintain tissue aerobiosis as long as possible. This is even reflected by isoenzyme patterns which do not consistently favour anaerobic glycolysis and, thus, are reminiscent of the 'lactate paradox' found in high altitude adaptation. Altogether, from a biological point of view, the perinatal period appears as a source of adaptive mechanisms that can be refound, in varying combinations, in many survival strategies. From a clinical point of view, the interplay of long- and short-term mechanisms offers a novel approach to estimation of the newborn's ability to withstand temporary oxygen lack. However, most of these mechanisms are not unambiguous and, above all, not unlimited in their protective effect so that they do not release obstetricians or neonatologists from their obligation to counteract fetal or neonatal hypoxia without delay.  相似文献   

17.
The lowered partial pressure of oxygen at high altitude is one of the severest and most pervasive environmental stresses affecting human populations. Virtually all organ systems and physiological functions are affected by hypoxia, and only elaborate modern technology can temporarily ameliorate the hypoxic stress of altitude exposure. The biological and behavioral responses of newcomers, sojourners, and native residents at higher elevations could provide a paradigm of the study of man's adaptation to the physical environment. Cardiorespiratory characteristics are closely related to altitude exposure, and certain alterations in these characteristics constitute the principal adaptive responses of the organism to hypoxia. However, not all altitude-related characteristics are beneficial to the organism; some peculiar characteristics occurring at high altitude may be without benefits, or may even be pathological and maladaptive. The roles of age, sex, race, physical condition, nutrition, and intensity and frequency of exposure during growth and development of altitude-related characteristics are not entirely understood. Moreover the influence of even large circulatory and respiratory alterations, on tissue oxygen tension may be small, and their adaptive significance difficult to evaluate. An equivalent level of functional adaptation might be achieved through differing combinations of structural, functional, and behavioral characteristics. It is concluded that more rigorous evaluations of adaptation to the environment are needed.  相似文献   

18.
19.
Organ and systemic mechanisms of organism oxygen supply in adaptation to high altitude of the Tien Shan (3200 m above sea level) were studied in the experiments on dogs. It is shown that in the first few days in the mountains (5-7th and 15th days) oxygen supply of the body is due to the increased delivery of O2 to organs and tissues; in the process of adaptation (30 days), the efficiency of tissue utilization of O2 increases. Changes of organ blood flow in visceral and somatic organs, features of compensation of the tissue hypoxia and oxygen supply of the heart, brain, skeletal muscle in different periods of adaptation to high altitude were established.  相似文献   

20.
Extreme environments are defined as the opposite of usual environments where the evoked physiological responses are unperceivable, repeatable and adjusted to the constraint. Adaptation strategies to a given environment show three levels: cultural or technological, where a buffer space is built to protect the organism from the hostile milieu, physiological, where temporary adaptive mechanisms are developed, and genetic, where full adaptation is possible with normal life and reproduction. The cost of adaptation increases from the genetic level (minimal cost) to the technological level. These concepts are illustrated by the example of adaptation to altitude hypoxia. The technological level is given by the use of oxygen bottles by high altitude climbers. The physiological level involves various physiological and biological systems (increase in heart rate, ventilation, erythropoiesis, expression of hypoxia-inducible factors, etc.). The genetic level has been reached by some animal species such as Yaks, Llamas, Pikas but has not yet been demonstrated in humans. Diseases developed during exposure to acute or chronic hypoxia may be considered as “adaptive crises” that mimic the transition to a lower energy level of adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号