首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apatite fission-track analysis was applied to Triassic and Cretaceous sediments from the South-Iberian Continental Margin to unravel its thermal history. Apatite fission-track age populations from Triassic samples indicate partial annealing and point to a maximum temperature of around 100–110 °C during their post-depositional evolution. In certain apatites from Cretaceous samples, two different fission-track age populations of 93–99 and around 180 Ma can be distinguished. Track lengths associated with these two populations enabled thermal modelling based on experimental annealing and mathematical algorithms. These thermal models indicate that the post-depositional thermal evolution attained temperatures ≤ 70 °C, which is consistent with available vitrinite-reflectance data. Thermal modelling for the Cretaceous samples makes it possible to decipher a succession of cooling and heating periods, consisting of (a) a late Carboniferous–Permian cooling followed by (b) a progressive heating episode that ended approximately 120 Ma at a maximum T of around 110 °C. The first cooling episode resulted from a combination of factors such as: the relaxation of the thermal anomaly related to the termination of the Hercynian cycle; the progressive exhumation of the Hercynian basement and the thermal subsidence related to the rifting of the Bay of Biscay, reactivated during the Late Permian. Jurassic thermal evolution deduced from the inherited thermal signal in the Cretaceous sediments is characterized by progressive heating that ended around 120 Ma. This heating episode is related to thermal subsidence during Jurassic rifting, in agreement with the presence of abundant mantle-derived tholeiitic magmas interbedded in the Jurassic rocks. The end of the Jurassic rifting is well marked by a cooling episode apparently starting during Neocomiam times and ending at surface conditions by Albian times.  相似文献   

2.
The South Anyui fold zone (western Chukotka) is considered a suture zone related to closure of the South Anyui oceanic basin and collision of Eurasia with the Chukotka–Arctic Alaska microcontinent in the Early Cretaceous. The existence of a compensatory sedimentation basin (foredeep) during folding in the terminal Jurassic–initial Cretaceous remains debatable. This work presents first data on age estimates of detrital zircons from Upper Mesozoic terrigenous sequences of the South Anyui suture zone obtained by the fission-track method. The distal flysch of presumably Late Jurassic age and the proximal flysch of probably Late Triassic age were sampled in the Uyamkanda River basin. The fission-track dating showed that sandstones from the flysch sections contain detrital zircons of two different-age populations. Young zircon populations from sandstones of distal turbidites in the upper course of the Uyamkanda River (two samples) are 149 ± 10.2 and 155.4 ± 9.0 Ma old (Late Jurassic), whereas those from coarse-grained proximal turbidites sampled in the lower course of the Uyamkanda River (one sample) is 131.1 ± 7.5 Ma old (Early Cretaceous). The data obtained indicate that the Late Mesozoic folding in the South Anyui suture zone was accompanied by the formation of a marginal sedimentary basin. Sediments accumulated in this basin compose tectonic nappes that constitute a fold–thrust structure with the northern vergence.  相似文献   

3.
钻探资料证实南海东北部发育海相中生界。潮汕坳陷是南海东北部最大残留坳陷,面积达3. 7×10 4 km2,经历了晚三叠世张裂初期、侏罗纪坳陷期、晚侏罗世末期第一次构造反转期、早白垩世再沉降期、晚白垩世晚期第二次构造反转期及新近纪区域热沉降期等6个构造演化阶段,充填了滨浅海、半深海等海相沉积及河湖相等陆相沉积。潮汕坳陷侏罗系半封闭海湾型烃源岩有机质丰度相对较高,泥岩地层厚,生烃能力强,油气地质条件好,具有较好的油气勘探前景。  相似文献   

4.
Single grain U–Pb ages of sediments from the Beipiao Basin, Northeast China were conducted to determine the evolution of basin provenance. Zircons from a sandstone in the Upper Triassic Laohugou Formation yield a wide range of ages and, according to their U–Pb ages, fall into four groups: 209.3±4.0–304.2±4.9, 1565.5±71–2154±50, 2400±35–2499±9, 2512±11–2557±74 Ma. These ages indicate that the zircons were principally derived from Late Archean, Proterozoic and Late Paleozoic plutonic rocks. Intrusions in the Mongolian Accretion Belt and the northern margin of the North China Block (NCB) were probably the main source of the sediments in the basin, but the easterly Liaodong Block also provided minor detrital material, with lower U–Pb ages, during the Late Triassic. Most of the U–Pb ages from zircons collected from a sandstone in the Lower Jurassic Beipiao Formation range from 194.3±2.9 to 233.8±4.2 Ma, reflecting the major sediment source during the Early Jurassic. Zircons derived from Late Indosinian plutonic rocks increased, which suggests that the detritus was supplied mainly from the interior of the Yan-Liao Orogenic Belt, especially from the Liaodong Block. Late Indosinian zircons (200–230 Ma) were eroded and deposited in the Lower Jurassic Beipiao Formation, and this implies that intensive tectonic activation and uplift of the Yan-Liao Orogenic Belt in the Mesozoic commenced in the Late Indosinian.  相似文献   

5.
The Mesozoic stratigraphy in the subsurface of the West Siberian Basin contains prolific hydrocarbon accumulations, and thus the depositional environments of marine and marginal marine Jurassic and Cretaceous age sediments are well-established. However, no information is currently available on strata of equivalent age that crop out along the SE basin margin in the Mariinsk–Krasnoyarsk region, despite the potential of these exposures to supply important information on the sediment supply routes into the main basin. Detailed sedimentological analysis of Jurassic–Cretaceous clastic sediments, in conjunction with palaeo-botanical data, reveals five facies associations that reflect deposition in a range of continental environments. These include sediments that were deposited in braided river systems, which were best developed in the Early Jurassic. These early river systems infilled the relics of a topography that was possibly inherited from earlier Triassic rifting. More mature fluvial land systems evolved in the Mid to Late Jurassic. By the Mid Jurassic, well-defined overbank areas had become established, channel abandonment was commonplace, and mudrocks were deposited on floodplains. Coal deposition occurred in mires, which were subject to periodic incursions by crevasse splay processes. Cretaceous sedimentation saw a renewed influx of sand-grade sediment into the region. It is proposed that landscape evolution throughout the Jurassic was driven simply by peneplanation rather than tectonic processes. By contrast, the influx of sandstones in the Cretaceous is tentatively linked to hinterland rejuvenation/ tectonic uplift, possibly coeval with the growth of large deltaic clinoform complexes of the Neocomian in the basin subsurface.  相似文献   

6.
Backstripping analysis and forward modeling of 162 stratigraphic columns and wells of the Eastern Cordillera (EC), Llanos, and Magdalena Valley shows the Mesozoic Colombian Basin is marked by five lithosphere stretching pulses. Three stretching events are suggested during the Triassic–Jurassic, but additional biostratigraphical data are needed to identify them precisely. The spatial distribution of lithosphere stretching values suggests that small, narrow (<150 km), asymmetric graben basins were located on opposite sides of the paleo-Magdalena–La Salina fault system, which probably was active as a master transtensional or strike-slip fault system. Paleomagnetic data suggesting a significant (at least 10°) northward translation of terranes west of the Bucaramanga fault during the Early Jurassic, and the similarity between the early Mesozoic stratigraphy and tectonic setting of the Payandé terrane with the Late Permian transtensional rift of the Eastern Cordillera of Peru and Bolivia indicate that the areas were adjacent in early Mesozoic times. New geochronological, petrological, stratigraphic, and structural research is necessary to test this hypothesis, including additional paleomagnetic investigations to determine the paleolatitudinal position of the Central Cordillera and adjacent tectonic terranes during the Triassic–Jurassic. Two stretching events are suggested for the Cretaceous: Berriasian–Hauterivian (144–127 Ma) and Aptian–Albian (121–102 Ma). During the Early Cretaceous, marine facies accumulated on an extensional basin system. Shallow-marine sedimentation ended at the end of the Cretaceous due to the accretion of oceanic terranes of the Western Cordillera. In Berriasian–Hauterivian subsidence curves, isopach maps and paleomagnetic data imply a (>180 km) wide, asymmetrical, transtensional half-rift basin existed, divided by the Santander Floresta horst or high. The location of small mafic intrusions coincides with areas of thin crust (crustal stretching factors >1.4) and maximum stretching of the subcrustal lithosphere. During the Aptian–early Albian, the basin extended toward the south in the Upper Magdalena Valley. Differences between crustal and subcrustal stretching values suggest some lowermost crustal decoupling between the crust and subcrustal lithosphere or that increased thermal thinning affected the mantle lithosphere. Late Cretaceous subsidence was mainly driven by lithospheric cooling, water loading, and horizontal compressional stresses generated by collision of oceanic terranes in western Colombia. Triassic transtensional basins were narrow and increased in width during the Triassic and Jurassic. Cretaceous transtensional basins were wider than Triassic–Jurassic basins. During the Mesozoic, the strike-slip component gradually decreased at the expense of the increase of the extensional component, as suggested by paleomagnetic data and lithosphere stretching values. During the Berriasian–Hauterivian, the eastern side of the extensional basin may have developed by reactivation of an older Paleozoic rift system associated with the Guaicáramo fault system. The western side probably developed through reactivation of an earlier normal fault system developed during Triassic–Jurassic transtension. Alternatively, the eastern and western margins of the graben may have developed along older strike-slip faults, which were the boundaries of the accretion of terranes west of the Guaicáramo fault during the Late Triassic and Jurassic. The increasing width of the graben system likely was the result of progressive tensional reactivation of preexisting upper crustal weakness zones. Lateral changes in Mesozoic sediment thickness suggest the reverse or thrust faults that now define the eastern and western borders of the EC were originally normal faults with a strike-slip component that inverted during the Cenozoic Andean orogeny. Thus, the Guaicáramo, La Salina, Bitúima, Magdalena, and Boyacá originally were transtensional faults. Their oblique orientation relative to the Mesozoic magmatic arc of the Central Cordillera may be the result of oblique slip extension during the Cretaceous or inherited from the pre-Mesozoic structural grains. However, not all Mesozoic transtensional faults were inverted.  相似文献   

7.
The thermal history of the south-westernmost Black Forest (Germany) and the adjacent Upper Rhine Graben were constrained by a combination of apatite and zircon fission-track (FT) and microstructural analyses. After intrusion of Palaeozoic granitic plutons in the Black Forest, the thermal regime of the studied area re-equilibrated during the Late Permian and the Mesozoic, interrupted by enhanced hydrothermal activity during the Jurassic. At the eastern flank of the Upper Rhine Graben along the Main Border Fault the analysed samples show microstructural characteristics related to repeated tectonic and hydrothermal activities. The integration of microstructural observations of the cataclastic fault gouge with the FT data identifies the existence of repeated tectonic-related fluid flow events characterised by different thermal conditions. The older took place during the Variscan and/or Mesozoic time at temperatures lower than 280°C, whereas the younger was probably contemporary with the Cenozoic rifting of the Upper Rhine Graben at temperatures not higher than 150°C.  相似文献   

8.
We investigate the Mesozoic–Cenozoic thermal history of the Daxi region (central SE South China Block) to evaluate the influence of the subduction of the Paleo-Pacific oceanic plate beneath the SE South China Block along the block's southeast margin on the tectonothermal evolution of the upper plate. We apply a multi-chronological approach that includes U-Pb geochronology on zircon, 40Ar/39Ar dating on muscovite and biotite from granitic rocks as well as fission-track and (U-Th-Sm)/He analyses on zircon and apatite from granitic and sedimentary rocks. The Heping granite, located in the Daxi region, has a magmatic age of ca. 441 Ma. The biotite 40Ar/39Ar ages of ca. 193 Ma for the Early Jurassic Shibei granite and ca. 160 Ma for the Late Jurassic Fogang granite, respectively, reflect magmatic cooling. The Triassic Longyuanba granite yielded a muscovite 40Ar/39Ar age of ca. 167 Ma, recording heating to ≥ 350 °C induced by nearby intrusion of Middle Jurassic granites. Zircon fission-track and (U-Th-Sm)/He ages from Lower Carboniferous–Lower Jurassic sandstones (140–70 Ma) record continuous cooling during the Cretaceous that followed extensive Middle–Late Jurassic magmatism in the Daxi region. Cretaceous cooling is related to exhumation in an extensional tectonic setting, consistent with lithospheric rebound due to foundering and rollback of the subducted Paleo-Pacific oceanic plate. Apatite fission-track (53–42 Ma) and (U-Th-Sm)/He ages (43–36 Ma), and thermal modelling document rapid cooling in the Paleocene–Eocene, which temporally coincides with continental rifting in the SE South China Block in the leadup to the opening of the South China Sea.  相似文献   

9.
渤海湾地区的中生代盆地构造概论   总被引:35,自引:1,他引:35  
根据 1∶5 0万渤海湾新生代盆地区基岩地质图揭示的残留中生代地层的分布及构造变形特征 ,渤海湾地区的中生代盆地可以分为 5期。早—中三叠世、晚三叠世盆地为克拉通内部大型坳陷盆地 ,其中晚三叠世盆地仅分布在渤海湾西南部地区。早—中侏罗世盆地分布于印支运动形成的向斜坳陷核部 ,属于压陷挠曲型盆地。晚侏罗世—早白垩世盆地分布广泛 ,属于裂陷盆地 ;晚白垩世盆地属于后裂陷阶段的坳陷盆地。这些盆地受印支运动、燕山运动影响而发生反转。印支运动在渤海湾地区的东、西部的表现有明显差异。西部变形弱、以近EW向宽缓褶皱变形为主 ,东部变形强、并叠加了NE向褶皱和逆冲断层变形。早燕山运动使渤海湾地区形成宽缓的大型NE向褶皱变形 ,并使早—中侏罗世盆地发生反转和逆冲断层变形 ;中、晚燕山运动基本没有在渤海湾地区形成褶皱构造变形 ,而是表现为晚侏罗—早白垩世盆地和晚白垩世盆地的区域性反转隆升。下—中侏罗统沉积之后 ,渤海湾地区的构造格局发生基本变革 ,进入以裂陷盆地为主的构造演化时期。  相似文献   

10.
Late Triassic and Early Jurassic bedrock in the Newark basin is pervasively fractured as a result of Mesozoic rifting of the east–central North American continental margin. Tectonic rifting imparted systematic sets of steeply-dipping, en échelon, Mode I, extension fractures in basin strata including ordinary joints and veins. These fractures are arranged in transitional-tensional arrays resembling normal dip-slip shear zones. They contributed to crustal stretching, sagging, and eventual faulting of basin rift deposits. Extension fractures display progressive linkage and spatial clustering that probably controlled incipient fault growth. They cluster into three prominent strike groups correlated to early, intermediate, and late-stage tectonic events reflecting about 50– 60° of counterclockwise rotation of incremental stretching directions. Finite strain analyses show that extension fractures allowed the stretching of basin strata by a few percent, and these fractures impart stratigraphic dips up to a few degrees in directions opposing fracture dips. Fracture groups display three-dimensional spatial variability but consistent geometric relations. Younger fractures locally cut across and terminate against older fractures having more complex vein-cement morphologies and bed-normal folds from stratigraphic compaction. A fourth, youngest group of extension fractures occur sporadically and strike about E–W in obliquely inverted crustal blocks. A geometric analysis of overlapping fracture sets shows how fracture groups result from incremental rotation of an extending tectonic plate, and that old fractures can reactivate with oblique slip components in the contemporary, compressive stress regime.  相似文献   

11.
论文在阿尔泰造山带富蕴县乌恰沟基性麻粒岩的锆石SHRIMP年代学、地球化学、变质温压条件和形成的大地构造背景研究基础上,利用麻粒岩、围岩片麻岩和侵入到麻粒岩的辉绿岩岩墙的裂变径迹热年代学探讨了麻粒岩从深部折返至地表的过程。裂变径迹年代学研究发现基性麻粒岩的锆石裂变径迹年龄为三叠纪,而麻粒岩、围岩片麻岩和侵入到麻粒岩的辉绿岩岩墙的磷灰石裂变径迹年龄均显示为晚白垩世至新生代早期。对磷灰石裂变径迹测试所得到的径迹长度和单颗粒年龄数据进行热史模拟表明,三叠纪时,基性麻粒岩抬升至约地表以下7.8km的上地壳,温度冷却至锆石裂变径迹的封闭温度;晚白垩世至新生代早期(约100~50Ma),麻粒岩、围岩片麻岩和辉绿岩抬升至约地表以下3.5km,温度冷却至磷灰石裂变径迹的封闭温度;约50~15Ma,三者滞留在约地表以下1.7km的磷灰石部分退火带;约15Ma以来,喜马拉雅运动使得它们被抬升剥蚀至地表。  相似文献   

12.
The northeastern South China Sea continental margin holds the key to understanding Late Mesozoic tectonics and evaluating hydrocarbon potentials in Mesozoic tectonic and stratigraphic structures offshore southeast China. With newly obtained and processed seismic data, and new drilling and logging data, we correlate regional Mesozoic stratigraphy and analyze major Mesozoic tectonic events and structures. In particular, we focus our study on the three major tectonic units in the area, the Chaoshan Depression, the Tainan Basin, and the Dongsha–Penghu Uplift, which are separated by basement high, thrust fold, and (or) faults. Stratigraphic correlations suggest a major phase of southeastward regression, spanning in time from the late Early Jurassic (180 Ma) to the Early Cretaceous (120 Ma). Seismic data reveal two major tectonic events, with the first one in the Late Jurassic to the Early Cretaceous, contemporary with the regression, and the second one in the Late Cretaceous. Regional magnetic anomaly map after the reduction to the pole clearly reveals the boundary between the Dongsha–Penghu Uplift and the Chaoshan–Tainan depositional system. The seismic and magnetic data also suggest that, while the Dongsha–Penghu Uplift has highly magnetized sources buried mostly in the upper crust at depths from about 2 km to about 20 km, the Chaoshan–Tainan depositional system has thick Mesozoic sediments of low magnetization.  相似文献   

13.
The NW–SE-striking Northeast German Basin (NEGB) forms part of the Southern Permian Basin and contains up to 8 km of Permian to Cenozoic deposits. During its polyphase evolution, mobilization of the Zechstein salt layer resulted in a complex structural configuration with thin-skinned deformation in the basin and thick-skinned deformation at the basin margins. We investigated the role of salt as a decoupling horizon between its substratum and its cover during the Mesozoic deformation by integration of 3D structural modelling, backstripping and seismic interpretation. Our results suggest that periods of Mesozoic salt movement correlate temporally with changes of the regional stress field structures. Post-depositional salt mobilisation was weakest in the area of highest initial salt thickness and thickest overburden. This also indicates that regional tectonics is responsible for the initiation of salt movements rather than stratigraphic density inversion.Salt movement mainly took place in post-Muschelkalk times. The onset of salt diapirism with the formation of N–S-oriented rim synclines in Late Triassic was synchronous with the development of the NNE–SSW-striking Rheinsberg Trough due to regional E–W extension. In the Middle and Late Jurassic, uplift affected the northern part of the basin and may have induced south-directed gravity gliding in the salt layer. In the southern part, deposition continued in the Early Cretaceous. However, rotation of salt rim synclines axes to NW–SE as well as accelerated rim syncline subsidence near the NW–SE-striking Gardelegen Fault at the southern basin margin indicates a change from E–W extension to a tectonic regime favoring the activation of NW–SE-oriented structural elements. During the Late Cretaceous–Earliest Cenozoic, diapirism was associated with regional N–S compression and progressed further north and west. The Mesozoic interval was folded with the formation of WNW-trending salt-cored anticlines parallel to inversion structures and to differentially uplifted blocks. Late Cretaceous–Early Cenozoic compression caused partial inversion of older rim synclines and reverse reactivation of some Late Triassic to Jurassic normal faults in the salt cover. Subsequent uplift and erosion affected the pre-Cenozoic layers in the entire basin. In the Cenozoic, a last phase of salt tectonic deformation was associated with regional subsidence of the basin. Diapirism of the maturest pre-Cenozoic salt structures continued with some Cenozoic rim synclines overstepping older structures. The difference between the structural wavelength of the tighter folded Mesozoic interval and the wider Cenozoic structures indicates different tectonic regimes in Late Cretaceous and Cenozoic.We suggest that horizontal strain propagation in the brittle salt cover was accommodated by viscous flow in the decoupling salt layer and thus salt motion passively balanced Late Triassic extension as well as parts of Late Cretaceous–Early Tertiary compression.  相似文献   

14.
The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track(AFT) thermochronology to unravel the timing of thrusting and exhumation for the Laolongshan-Shengrenqiao Fault(LSF) in the southern Ordos Basin. The AFT ages from opposite sides of the LSF reveal a significant latest Triassic to Early Jurassic time-temperature discontinuity across this structure. Thermal modeling reveals at the latest Triassic to Early Jurassic, a ~50°C difference in temperature between opposite sides of the LSF currently exposed at the surface. This discontinuity is best interpreted by an episode of thrusting and exhumation of the LSF with ~1.7 km of net vertical displacement during the latest Triassic to Early Jurassic. These results, when combined with earlier thermochronological studies, stratigraphic contact relationship and tectono-sedimentary evolution, suggest that the southern Ordos Basin experienced coeval intense tectonic contraction and developed a north-vergent fold-and-thrust belt. Moreover, the southern Ordos Basin experienced a multi-stage differential exhumation during Mesozoic, including the latest Triassic to Early Jurassic and Late Jurassic to earliest Cretaceous thrust-driven exhumation as well as the Late Cretaceous overall exhumation. Specifically, the two thrust-driven exhumation events were related to tectonic stress propagation derived from the latest Triassic to Early Jurassic continued compression from Qinling Orogenic Collage and the Late Jurassic to earliest Cretaceous intracontinental orogeny of Qinling Orogenic Collage, respectively. By contrast, the Late Cretaceous overall exhumation event was related to the collision of an exotic terrain with the eastern margin of continental China at ~100 Ma.  相似文献   

15.
ABSTRACT New radiolarian biostratigraphical data have shed light on the Mesozoic tectonic evolution of South-Tethys in the Baer–Bassit region of NW Syria. Radiolarian assemblages of Late Triassic, Middle Jurassic and Early Cretaceous age were extracted from radiolarites in five measured sections. The results are compared with published radiolarian ages from the Mamonia Complex, western Cyprus. These two areas are interpreted as preserved fragments of the conjugate margins of a small South Tethyan oceanic basin formed by Triassic rifting. In the southerly (i.e. Arabian) margin, proximal successions were dominated by shallow-water-derived carbonate, whereas distal successions reveal seamount-type alkaline/peralkaline volcanism, dated as both Late Triassic and Middle Jurassic–Early Cretaceous. Along the inferred northern margin (i.e. western Cyprus) proximal successions are dominantly terrigenous, whereas distal settings include Late Triassic oceanic crust and seamount-type lavas.  相似文献   

16.
The study provides a regional seismic interpretation and mapping of the Mesozoic and Cenozoic succession of the Lusitanian Basin and the shelf and slope area off Portugal. The seismic study is compared with previous studies of the Lusitanian Basin. From the Late Triassic to the Cretaceous the study area experienced four rift phases and intermittent periods of tectonic quiescence. The Triassic rifting was concentrated in the central part of the Lusitanian Basin and in the southernmost part of the study area, both as symmetrical grabens and half-grabens. The evolution of half-grabens was particularly prominent in the south. The Triassic fault-controlled subsidence ceased during the latest Late Triassic and was succeeded by regional subsidence during the early Early Jurassic (Hettangian) when deposition of evaporites took place. A second rift phase was initiated in the Early Jurassic, most likely during the Sinemurian–Pliensbachian. This resulted in minor salt movements along the most prominent faults. The second phase was concentrated to the area south of the Nazare Fault Zone and resulted here in the accumulation of a thick Sinemurian–Callovian succession. Following a major hiatus, probably as a result of the opening of the Central Atlantic, resumed deposition occurred during the Late Jurassic. Evidence for Late Jurassic fault-controlled subsidence is widespread over the whole basin. The pattern of Late Jurassic subsidence appears to change across the Nazare Fault Zone. North of the Nazare Fault, fault-controlled subsidence occurred mainly along NNW–SSE-trending faults and to the south of this fault zone a NNE–SSW fault pattern seems to dominate. The Oxfordian rift phase is testified in onlapping of the Oxfordian succession on salt pillows which formed in association with fault activity. The fourth and final rift phase was in the latest Late Jurassic or earliest Early Cretaceous. The Jurassic extensional tectonism resulted in triggering of salt movement and the development of salt structures along fault zones. However, only salt pillow development can be demonstrated. The extensional tectonics ceased during the Early Cretaceous. During most of the Cretaceous, regional subsidence occurred, resulting in the deposition of a uniform Lower and Upper Cretaceous succession. Marked inversion of former normal faults, particularly along NE–SW-trending faults, and development of salt diapirs occurred during the Middle Miocene, probably followed by tectonic pulses during the Late Miocene to present. The inversion was most prominent in the central and southern parts of the study area. In between these two areas affected by structural inversion, fault-controlled subsidence resulted in the formation of the Cenozoic Lower Tagus Basin. Northwest of the Nazare Fault Zone the effect of the compressional tectonic regime quickly dies out and extensional tectonic environment seems to have prevailed. The Miocene compressional stress was mainly oriented NW–SE shifting to more N–S in the southern part.  相似文献   

17.
Apatite fission-track analyses were carried out on outcrop and core samples from the Rhenish massif and the Carboniferous Ruhr Basin/Germany in order to study the late- and post-Variscan thermal and exhumation history. Apatite fission-track ages range from 291±15 Ma (lower Permian) to 136±7 Ma (lower Cretaceous) and mean track lengths vary between 11.6 m and 13.9 m, mostly displaying unimodal distributions with narrow standard deviations. All apatite fission-track ages are younger than the corresponding sample stratigraphic age, indicating substantial post-depositional annealing of the apatite fission-tracks. This agrees with results from maturity modelling, which indicates 3500–7000 m eroded Devonian and Carboniferous sedimentary cover. Numerical modelling of apatite fission-track data predicts onset of exhumation and cooling not earlier than 320 Ma in the Rhenish massif and 300 Ma in the Ruhr Basin, generally followed by late Carboniferous–Triassic cooling to below 50–60°C. Rapid late Variscan cooling was followed by moderate Mesozoic cooling rates of 0.1–0.2°C/Ma, converting into denudation rates of <1 mm/a (assuming a stable geothermal gradient of 30°C/km). Modelling results also give evidence for some late Triassic and early Jurassic heating and/or burial, which is supported by sedimentary rocks of the same age preserved at the rim of the lower Rhine Basin and in the subsurface of the Central and Northern Ruhr Basin. Cenozoic exhumation and cooling of the Rhenish massif is interpreted as an isostatic response to former erosion and major base-level fall caused by the subsidence in the lower Rhine Basin.  相似文献   

18.
东海盆地中、新生代盆架结构与构造演化   总被引:6,自引:0,他引:6  
基于地貌、钻井、岩石测年和地震等资料,分析盆地地层分布、盆架结构、构造单元划分和裂陷迁移规律,结果表明东海盆地由台北坳陷、舟山隆起、浙东坳陷、钓鱼岛隆褶带和冲绳坳陷构成,是以新生代沉积为主、中生代沉积为辅的大型中、新生代叠合含油气盆地;古元古代变质岩系构成了盆地的基底。该盆地不仅是印度-太平洋前后相继的动力体系作用下形成的西太平洋沟-弧-盆构造体系域一部分,而且也是古亚洲洋动力体系作用下形成的古亚洲洋构造域和特提斯洋动力体系作用下形成的特提斯洋构造域一部分,晚侏罗世至早白垩世经历了构造体制转换,盆地格局发生重大变革,早白垩世以前主要受古亚洲-特提斯洋构造体制影响的强烈挤压造山和地壳增厚作用演变为早白垩世以来主要受太平洋构造体制控制的陆缘伸展裂陷和岩石圈减薄作用,经历侏罗纪古亚洲-特提斯构造体制大陆边缘拗陷和白垩纪以来太平洋构造体制弧后裂陷两大演化阶段。白垩纪以来太平洋构造体制的弧后裂陷演化阶段可细分为早白垩世至始新世裂陷期、渐新世至晚中新世拗陷期和中新世末至全新世裂陷期。  相似文献   

19.
The Song-Kul Basin sits on a plateau at the Northern and Middle Kyrgyz Tien Shan junction. It is a lacustrine basin, occupied by Lake Song-Kul and predominantly developed on igneous basement. This basement was targeted for a multi-method chronological study to identify the different magmatic episodes responsible for basement formation and to constrain the timing of the development of its present-day morphology. Zircon U/Pb dating by LA-ICP-MS revealed four different magmatic episodes: a Late Cambrian (~ 500 Ma) island arc system, a Late Ordovician (~ 450 Ma) subduction related intrusion, an Early Permian (~ 290 Ma) collisional stage, and a Middle to Late Permian (~ 260 Ma) post-collisional magmatic pulse. Middle to Late Triassic (~ 200–230 Ma) titanite fission-track ages and Late Triassic – Early Jurassic (~ 180–210 Ma) apatite fission-track ages and thermal history modeling indicate the Song-Kul basement was already emplaced in the shallow crust at that time. An exhumed fossil apatite fission-track partial annealing zone is recognized in the bordering Song-Kul mountain ranges. The area experienced only minor post-Early Mesozoic denudation. The igneous basement was slowly brought to apatite (U–Th)/He retention temperatures in the Late Cretaceous–Palaeogene. Miocene to present reactivation of the Tien Shan does not manifestly affect this part of the orogen.  相似文献   

20.
With the aim of constraining the influence of the surrounding plates on the Late Paleozoic–Mesozoic paleogeographic and tectonic evolution of the southern North China Craton (NCC), we undertook new U–Pb and Hf isotope data for detrital zircons obtained from ten samples of upper Paleozoic to Mesozoic sediments in the Luoyang Basin and Dengfeng area. Samples of upper Paleozoic to Mesozoic strata were obtained from the Taiyuan, Xiashihezi, Shangshihezi, Shiqianfeng, Ermaying, Shangyoufangzhuang, Upper Jurassic unnamed, and Lower Cretaceous unnamed formations (from oldest to youngest). On the basis of the youngest zircon ages, combined with the age-diagnostic fossils, and volcanic interlayer, we propose that the Taiyuan Formation (youngest zircon age of 439 Ma) formed during the Late Carboniferous and Early Permian, the Xiashihezi Formation (276 Ma) during the Early Permian, the Shangshihezi (376 Ma) and Shiqianfeng (279 Ma) formations during the Middle–Late Permian, the Ermaying Group (232 Ma) and Shangyoufangzhuang Formation (230 and 210 Ma) during the Late Triassic, the Jurassic unnamed formation (154 Ma) during the Late Jurassic, and the Cretaceous unnamed formation (158 Ma) during the Early Cretaceous. These results, together with previously published data, indicate that: (1) Upper Carboniferous–Lower Permian sandstones were sourced from the Northern Qinling Orogen (NQO); (2) Lower Permian sandstones were formed mainly from material derived from the Yinshan–Yanshan Orogenic Belt (YYOB) on the northern margin of the NCC with only minor material from the NQO; (3) Middle–Upper Permian sandstones were derived primarily from the NQO, with only a small contribution from the YYOB; (4) Upper Triassic sandstones were sourced mainly from the YYOB and contain only minor amounts of material from the NQO; (5) Upper Jurassic sandstones were derived from material sourced from the NQO; and (6) Lower Cretaceous conglomerate was formed mainly from recycled earlier detritus.The provenance shift in the Upper Carboniferous–Mesozoic sediments within the study area indicates that the YYOB was strongly uplifted twice, first in relation to subduction of the Paleo-Asian Ocean Plate beneath the northern margin of the NCC during the Early Permian, and subsequently in relation to collision between the southern Mongolian Plate and the northern margin of the NCC during the Late Triassic. The three episodes of tectonic uplift of the NQO were probably related to collision between the North and South Qinling terranes, northward subduction of the Mianlue Ocean Plate, and collision between the Yangtze Craton and the southern margin of the NCC during the Late Carboniferous–Early Permian, Middle–Late Permian, and Late Jurassic, respectively. The southern margin of the central NCC was rapidly uplifted and eroded during the Early Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号