首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
Slender piles embedded in soft ground or liquefied soil may buckle under vertical load. In this paper, both small- and large-scale model tests are conducted to investigate the buckling mechanisms of a slender pile and the lateral earth pressure acting on the pile. To observe the buckling of a slender pile, the strain-controlled loading method is adopted to apply a vertical load. When the two ends of a slender pile are hinged, the buckling mechanisms of small- and large-scale model tests are same. It should be noted that this applies only to a system with a small ratio of pile bending stiffness to soil bending stiffness. An applied vertical load increases with an increasing pile head settlement until it reaches the critical buckling load. By further increasing the pile head settlement, the measured load approaches the critical buckling load. In the large-scale model test, the measured lateral earth pressure (i.e., active and passive) acting on the slender pile varies linearly with the lateral pile displacement when the measured range is 3–5?m beneath the ground. A critical buckling calculation method has been adopted to compare with the conventional “m” method. The two-sided earth pressure calculation method can achieve more approximate results with the model test.  相似文献   

2.
The dynamic torsional buckling and post-buckling of elasto-plastic circular cylindrical shell isstudied.By the usage of the Bodner-Partom constitutive relation,the present visco-plastic problem is treat-ed as an orthotropic elastic problem.Based on the nonlinear large deflection shell therory,the governingdynamic buckling equation is solved by the Runge-Kutta method,and the critical buckling stress is deter-mined by the B-R criterion.The present paper is mainly focused on the imperfection sensitivity,the strainrate sensitivity,and the dynamic post-buckling characters for the shell loaded dynamically with a constantshear strain rate.Numerical results show that the critical shear stress and imperfection sensitivity will in-crease with the increase of strain rate.It is found that the elastic buckling stress is more sensitive toimperfection than the visco-plastic buckling.The present research also reveals some dynamic post-bucklingcharacters for the cylindrical shell,and it is shown that the shell will vibra  相似文献   

3.
以惠州25-3/1双层海底管道为例,提出高温荷载下刚性连接双层海底管道的侧向屈曲分析方法,并研究该类管道的侧向屈曲特性.将解析分析与有限元技术相结合,在提出刚性连接双层海底管道屈曲分析方法的同时,发展了Hobbs公式的应用范围,使其成为屈曲分析有限元建模指导工具.以分析不稳定平衡问题的改进Riks方法被证明为高温海底管道屈曲分析的有效算法,得到的弧长-载荷比例因子曲线能够充分地描述双层管道的屈曲失稳过程.惠州管道的分析结果表明,刚性连接双层海底管道的整体热稳定性较高,在海床上一般不容易发生侧向屈曲,但热荷载作用下内管的后屈曲将有可能引发较高的应力集中,对此需要充分校核;另外环空间隙的减小有利于提高内管的临界屈曲载荷,从而提升管道的整体性能.  相似文献   

4.
海底管线是海洋石油的重要输运手段。为满足输送工艺的需要,正常工作条件下管线往往被施加较高的温度和压强,高温高压使管线内产生附加应力,当附加应力大于土体对管线的约束力时,管线就会发生整体屈曲。过度的水平向整体屈曲会导致截面产生较大的弯曲应力和压缩应变,对管线系统的安全运行造成威胁,因此需要对发生水平向整体屈曲后的管线进行验算。采用解析解法、规范法和有限元法对管线的整体屈曲进行分析,提出了应用临界屈曲荷载值域空间和值域下限来判断不同缺陷大小下管线是否发生水平向整体屈曲的方法。结合工程实例,分别采用内力控制标准和位移控制标准对管线水平向整体屈曲后是否失效进行了验算。研究指出,相较于位移标准,内力控制标准更为严格。  相似文献   

5.
The impact buckling of a laminated composite bar is investigated in case of one of its endsmoving due to axial impact compression.The governing equations considering the first-order sheardeformation effect are derived by the Hamilton principle and solved by the finite difference method.Thecritical axial shortness is determined by the B-R cirterion.The given example is used to highlight the in-fluences of initial imperfection,impact velocity,stress wave and coupled stiffness.It is found that theunsymmetrically laminated bar has a quite different dynamic buckling behaviour from that of thesymmetrically laminated bar.  相似文献   

6.
Offshore pipelines operating under high pressure and temperature are subjected to upheaval buckling. Pipeline behaviour in upheaval buckling depends on a number of factors including the shape of pipeline imperfection, installation stresses, loading types, seabed sediment behaviour and the flexural stiffness of the pipe. Current method of predicting upheaval buckling is based on simplified shapes of pipeline imperfection developed for idealized seabed conditions. To account for the effect of internal pressure, the pressure load is represented using an equivalent temperature. However, the applicability of these idealizations on the prediction of upheaval buckling has not been well-investigated. In this paper, the three-dimensional finite element modelling technique is used to investigate the applicability of idealized shapes and their effects on the upheaval buckling of pipeline for a seabed condition at offshore Newfoundland in Canada. The finite element model is then used to conduct a parametric study to investigate the effects of installation stress, loading types, seabed parameters and the flexural stiffness of the pipe. Finally, a design chart is developed to determine the optimum height of seabed features to manage pipeline stability against upheaval buckling under different temperature and pressure loadings.  相似文献   

7.
The challenges for determining the mechanical behavior of flexible pipes mainly arise from highly non-linear geometrical and material properties and complex contact interaction conditions between and within layers components. This paper develops an innovative model to investigate the linear viscoelastic behavior of flexible pipes under axisymmetric loads in time domain. The model is derived from an equivalent linear elastic axisymmetric model by invoking the elastic-viscoelastic correspondence principle. Analytical formulations that describe the behavior of the metallic helical layers based on a combination of differential geometry concepts and Clebsch–Kirchhoff equilibrium equations for initially curved slender elastic rods are presented. The elastic response of the homogenous polymeric cylindrical layers is also presented. The assemblage of both types of governing algebraic equations that approximate analytical solutions for force and moment distributions, deformations in each layer, as well as contact pressure between near layers, taking time-dependent characteristics of polymeric layers into account are provided and it is clear that the relationship between axial force and elongation is non-linear and encompasses a hysteretic response. Besides, the creep behavior in axial direction can also be found. Some insights into the differences in the behavior for several loading conditions are discussed by considering variable frequencies.  相似文献   

8.
不埋海底管道在高温高压作用下,易发生水平向整体屈曲。实际工程中,常通过在管道路由上设置整体屈曲触发装置,实现对水平向整体屈曲的有效控制,其中以枕木法的成功应用最为多见。本文分析了枕木法的主要影响因素并验证了采用枕木法会出现管道屈曲段应力集中的现象,对比了枕木法、分布浮力法和枕木-浮力耦合法对管道整体屈曲变形规律的影响,采用数值模拟方法系统研究了枕木及浮力参数对管道水平向屈曲和后屈曲的影响规律。研究表明,在枕木两侧设置浮力段的人工触发装置可有效触发管道整体屈曲,同时促使管道虚拟锚固点间轴力的释放,降低了管道中屈曲段的应力,相较枕木法,枕木-浮力耦合法可将管道中的最大应力降低23%。  相似文献   

9.
10.
Offshore oil and gas exploration are gradually heading toward the deep sea and even the ultra-deep sea. According, the working temperature and pressure intensity of subsea oil and gas pipelines have increased by a considerable degree. This situation is accompanied by the global buckling problem in deep sea pipelines, which has become increasingly common. Meanwhile, ordinary single-layer pipelines cannot last for a long time under harsh deep-sea working conditions. Thus, multilayer pipelines, such as the pipe-in-pipe (PIP) structure and bundled pipelines, have gradually become top choices. However, the global buckling mechanisms of these multilayer pipelines are more complicated than those of single-layer pipelines. The sleeper–snake lay pipeline, which is an active control method for global buckling, was used in this study. The change and development laws of global buckling in a PIP structure at different wavelengths and amplitudes were determined through an experimental study. A dynamic solution method that considers artificial damping was adopted to establish finite element global buckling models of a PIP structure with initial imperfections. The effects of various factors, such as pipeline laying shape, sleeper–pipe function, and seabed–pipe function, on global buckling were analyzed. By the result of finite element method analysis, the initial imperfection, and sleeper–pipeline friction were determined to be the key factors that influenced critical pipeline buckling force. Accordingly, a reference for the design of PIP structures is presented.  相似文献   

11.
The paper presents a non-linear buckling analysis of ring stiffened cylindrical shells subject to external pressure. The collapse pressure is calculated by assuming failure to occur when the material reaches a plastic stress state defined by the Ilyushin criterion. It is shown in the paper that use of the non-linear theory can reduce the estimated first yield by up to 25% in comparison to the linear buckling analysis used up to now. Comparison of predicted failure loads are in good agreement with the lower bound of test results.  相似文献   

12.
The new simple design equations for predicting the ultimate compressive strength of stiffened plates with initial imperfections in the form of welding-induced residual stresses and geometric deflections were developed in this study. A non-linear finite element method was used to investigate on 60 ANSYS elastic–plastic buckling analyses of a wide range of typical ship panel geometries. Reduction factors of the ultimate strength are produced from the results of 60 ANSYS inelastic finite element analyses. The proposed design equations have been developed based on these reduction factors. For the real ship structural stiffened plates, the most general loading case is a combination of longitudinal stress, transverse stress, shear stress and lateral pressure. The new simplified analytical method was generalized to deal with such combined load cases. The accuracy of the proposed equations was validated by the experimental results. Comparisons show that the adopted method has sufficient accuracy for practical applications in ship design.  相似文献   

13.
Han  Qing-hua  Ma  Ye-xuan  Feng  Xin-xin  Xu  Wan-hai 《中国海洋工程》2019,33(2):226-236
How to reconstruct a dynamic displacement of slender flexible structures is the key technology to develop smart structures and structural health monitoring(SHM), which are beneficial for controlling the structural vibration and protecting the structural safety. In this paper, the displacement reconstruction method based on cubic spline fitting is put forward to reconstruct the dynamic displacement of slender flexible structures without the knowledge of modeshapes and applied loading. The obtained strains and displacements are compared with the results calculated by ABAQUS to check the method's validity. It can be found that the proposed method can accurately identify the strains and displacement of slender flexible structures undergoing linear vibrations, nonlinear vibrations, and parametric vibrations. Under the concentrated force, the strains of slender flexible structures will change suddenly along the axial direction. With locally densified measurement points, the present reconstruction method still works well for the strain concentration problem.  相似文献   

14.
The experimental investigations on the pressure distribution around a large vertical cylinder fixed on a wave channel, piercing the free surface and subjected to regular waves have been carried out. Recently, considerable advances have been made in the development of analytical techniques for studying non-linear wave loading phenomena on large structures. However, there is a lack of high quality experimental data that may be used for validating the analytical and numerical solutions obtained. This paper describes the design and execution of an experiment conducted at the Hydraulics Laboratory in the Civil Engineering Department of the Istanbul Technical University. Experimental measurements of pressures at different locations are presented including comparisons with the computational results. This study showed that the experimental and computational results generally exhibited better correlation, however, the measured pressure values diverged from the computational results while approaching the free surface.  相似文献   

15.
《Oceanologica Acta》1998,21(1):33-46
The present work establishes clear relationships of the amplitude and phase variation of the barotropic M2 signal in the velocity of the current with the barotropic subinertial flow in the Strait of Gibraltar. The analytical procedure is applied on data from Gibraltar Experiment in order to obtain barotropic subinertial series and the amplitude and phase variation of the M2 signal series involves harmonic analysis, empirical orthogonal function analysis and complex demodulation. In addition, cross-spectral analysis has been applied to study these relationships, concerning which non-linear interaction between M2 and the subinertial oscillation is proposed as the responsible physical mechanism. An analytical solution characterizing this type of non-linear interaction is offered in explanation of the experimental results.  相似文献   

16.
Oscar Barton  Jr.   《Ocean Engineering》2007,34(11-12):1543-1551
In this paper, an approximate closed-form solution is presented to compute the moisture-related buckling of symmetric angle-ply laminates. The environment corresponds to a steady state condition, which provides a uniform moisture distribution for the laminate. The laminate consists of four layers [θ/−θ]s constructed of low, moderate and high stiffness ratio materials. Comparative results using the Rayleigh–Ritz method provides a means of assessing the accuracy of the expression. For certain laminate architectures, several modes must be computed to ascertain the lowest buckling mode, and once identified, provides an excellent approximation for the mode computed using the Rayleigh–Ritz method.  相似文献   

17.
ABSTRACT

An analytical solution is developed in this paper to investigate the vertical time-harmonic response of a large-diameter variable-section pile, and it considers the radial inhomogeneity of the surrounding soil caused by construction disturbance. First, the saturated soil surrounding the pile is described by Biot’s poroelastic theory and a series of infinitesimally thin independent layers along the shaft of the pile, and the pile is represented by a variable-section Rayleigh–Love rod. Then, the dynamic equilibrium equations of the soil and pile are solved to obtain an analytical solution for the impedance function at the pile top using the complex stiffness transfer method and impedance function transfer method. Finally, the proposed solution is compared with previous solutions to verify its reliability, and a parameter study is conducted to provide insights into the sensitivity of the vertical dynamic impedance of the pile and velocity response in low-strain integrity testing on defective piles.  相似文献   

18.
双拱初始缺陷海底管线水平向整体屈曲数值模拟分析   总被引:1,自引:0,他引:1  
为了研究具有双拱反对称初始缺陷海底管线的整体屈曲特性,采用模态分析法将最可能出现的缺陷形态引入数值分析模型中。针对管线在高温高压作用下发生整体屈曲的动态变形特征,运用显式动力数值模拟方法研究了管线整体屈曲过程中水平向变形与轴向变形随温度和内压的变化规律,建立了在整体屈曲过程中屈曲管段与滑动管段轴力的变化过程与初始缺陷形态的关系。将数值模拟结果同经典解析解和室内模型实验结果进行对比,验证了本方法的可靠性。工程算例的分析结果表明,管线整体屈曲的发生是一个由低阶向高阶发展的过程,具有双拱缺陷的管线首先发生二阶模态的整体屈曲,而后过渡到四阶模态;管线整体屈曲的变形包括屈曲段的水平向变形和滑动管段的轴向缩进,其中水平变形释放了管壁内的轴力,轴力的释放量随初始缺陷尖锐程度的降低而增大;轴向缩进变形由于受到地基土的摩阻力使滑动管段内的轴力发生累积,轴力的累积量随初始缺陷的尖锐程度的降低而增加。以上研究成果对指导实际工程具有现实意义。  相似文献   

19.
Submarine pipelines are the primary component of an offshore oil transportation system. Under operating conditions, a pipeline is subjected to high temperatures and pressures to improve oil mobility. As a result, additional stress accumulates in pipeline sections, which causes global buckling. For an exposed deep-water pipeline, lateral buckling is the major form of this global buckling. Large lateral displacement causes a very high bending moment which may lead to a local buckling failure in the pipe cross-section. This paper proposes a lateral global buckling failure envelope for deep-water HT/HP pipelines using a numerical simulation analysis. It analyzes the factors influencing the envelope, including the thickness t, diameter D, soil resistance coefficient μ, calculating length Lf, imperfection length L and imperfection amplitude V. Equations to calculate the failure envelope are established to make future post-buckling pipeline failure assessment more convenient. The results show that (1) the limit pressure difference pmax (the failure pressure difference for a post-buckling pipeline when it suffers no difference in temperature) is usually below the burst pressure difference pb (which is the largest pressure difference a pipeline can bear and is determined from the strength and sectional dimensions of the pipeline) and is approximately 0.62–0.75 times the value of pb and (2) thickness t has little influence on the normalized envelopes, but affects pmax. The diameter D, soil resistance coefficient μ, and calculating length Lf influence the maximum failure temperature difference Tmax (the failure temperature difference for a pipeline suffering no pressure difference). The diameter D also significantly affects the form of the normalized envelope.  相似文献   

20.
Offshore pipelines are usually buried to avoid damage from fishing activities and to provide thermal insulation. Provided that the buried pipelines are sufficiently confined in the lateral direction by the passive resistance of the trench walls, they may be subject to vertical buckling caused by a rise in temperature. Vertical buckling is usually called upheaval buckling because the heated pipeline is assumed to move upwards conventionally. However, the seabed may be very soft, especially where a pockmark or abyssal ooze appears. Consequently, under thermal compressive force, the pipeline may buckle downward and penetrate into the seabed because the downward soil resistance is small. In this study, we extended an analytical solution for vertical pipeline buckling on a rigid seabed to a soft seabed, and the effects of soil resistance on pipeline stability, buckling mode and amplitude are illustrated and analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号