首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 640 毫秒
1.
在7.5 L发酵罐上考察了Paenibacillus polymyxa ZJ-9混合发酵菊粉和葡萄糖合成R,R-2,3-丁二醇的工艺条件。选用菊芋菊粉粗提液为发酵前期底物,分析比较不同初始菊粉浓度下的细胞比生长速率(μ)和产物比合成速率(qp),进而研究了补糖种类和不同补料方式对合成R,R-2,3-丁二醇的影响。结果表明,初始菊粉75.0g/L,当发酵到24 h、31 h时,分别添加15.0 g/L的葡萄糖,发酵效果最佳,44 h时,产物产量达到最高值47.8 g/L,与分批发酵相比,糖转化率由原来的34.9%提高到45.5%,生产强度由原来的0.70 g/(L·h)提高到1.09 g/(L·h),并且副产物乙偶姻、残糖浓度相对较低。  相似文献   

2.
针对Paenibacillus polymyxa ZJ-9一步法发酵菊芋菊粉粗提液制备R,R-2,3-丁二醇的发酵液特点,利用壳聚糖对该发酵液进行絮凝研究。结果表明,壳聚糖分子量、壳聚糖用量、助凝剂海藻酸钠用量、pH和搅拌时间分别为:43.5 kDa、0.75 g/L、0.125 g/L、5.0和15 min时,絮凝效果最佳,在此工艺条件下,发酵液中菌体和蛋白质的絮凝率分别高达89.46%和78.93%,而R,R-2,3-丁二醇保留率约为98.54%。利用双水相萃取技术对絮凝后的发酵液中R,R-2,3-丁二醇进行了分离,结果表明,异丙醇/硫酸铵双水相体系萃取效果最好,当异丙醇和硫酸铵的用量分别约为33%和30%(w/w)时,R,R-2,3-丁二醇在上相的分配系数和萃取率最高,分别约为7.96和89.40%,且异丙醇/硫酸铵双水相体系能够有效萃取分离絮凝后的发酵液中不同含量的R,R-2,3-丁二醇。絮凝和双水相萃取技术分离发酵液中R,R-2,3-丁二醇具有针对性强、效率高、成本低等优点,适用于工业化生产。  相似文献   

3.
在50L自控式发酵罐上进行ε-聚赖氨酸发酵条件优化研究,主要考察了分批发酵和补料分批发酵过程中pH、搅拌转速对ε-PL发酵和菌体生长的影响。结果表明,当控制pH在5.0以上时有利于菌体的生长,但ε-聚赖氨酸基本不合成,甚至出现降解现象;当pH维持在4.0左右时,能促进ε-聚赖氨酸的合成。搅拌转速为300r/min时,有利于溶氧和传质,400r/min时,由于剪切力过大,导致菌丝断裂,ε-PL产量下降。通过控制发酵中后期pH4.0和搅拌转速300r/min的pH反馈控制自动流加补料培养,可获得最大的ε-PL产量7.36g/L,产率0.072g/g,产量较优化前提高近10倍,产率提高2倍。  相似文献   

4.
在50L自控式发酵罐上进行了ε-聚赖氨酸(ε-PL)发酵条件的优化研究,主要考察了分批发酵和补料分批发酵过程中pH、搅拌转速对ε-PL发酵和菌体生长的影响。结果表明,当控制pH在5.0以上时有利于菌体的生长,但ε-PL基本不合成,甚至出现降解现象;当维持pH在4.0左右时,能促进ε-PL的合成。搅拌转速为300 r/min时,有利于溶氧和传质,400r/min时,由于剪切力过大,导致菌丝断裂,ε-PL产量下降。通过控制发酵中后期pH4.0和搅拌转速300r/min的pH反馈控制自动流加补料培养,可获得最大的ε-PL产量7.36g/L,产率0.072g/g,产量较优化前提高近10倍,产率提高2倍。  相似文献   

5.
研究了溶氧对红曲菌在发酵罐中生物合成橙色素的影响。分别采用不同通气量和搅拌转速以达到不同溶氧水平,考察不同溶氧水平下红曲菌w1夏在10 L发酵罐中生产橙色素的情况,并将优化后条件放大至50 L发酵罐中。结果表明,不同通气量水平下底物消耗、p H值和溶氧情况相似,但最终橙色素色价不同,基本上呈现出随通气量增加,色价呈现上升趋势;搅拌转速升高,菌体量和色价均随之升高,但涨幅不大;50 L罐中菌体生长和橙色素合成结果验证了10 L罐结果。在大规模生产时应尽可能采用高的通气量和适宜的搅拌转速,达到较高的溶氧水平,以利于菌体生长和橙色素合成。  相似文献   

6.
溶氧对巴氏醋杆菌醋酸发酵有显著影响,但是目前溶氧对醋酸发酵影响的机理尚不十分清楚,文章通过提高搅拌转速,探讨强化供氧对巴氏醋杆菌醋酸发酵影响的机理。研究结果显示:搅拌转速从500r/min增加到700r/min后,胞内ATP浓度提高了302%;乙醇氧化偶联呼吸链产能途径关键酶ADH,ALDH和ATPase酶活性分别提高了40%,60%和56%。当发酵28h时,转速700r/min与500r/min相比菌体浓度提高了37%,产酸量提高了150%,单位菌体产酸提高了84%。由此可知,巴氏醋杆菌菌体生长和醋化乙醇过程中需要消耗大量的溶氧,尤其在16~28h产酸高峰期对溶氧的消耗更大。提高搅拌转速强化供氧可显著提高巴氏醋杆菌乙醇氧化偶联呼吸链产能途径关键酶的活性,强化乙醇氧化产酸和乙醇呼吸链途径产能,为巴氏醋杆菌菌体生长和产酸提供更多的能量,满足菌体快速生长和适应高酸生存环境对能量的需求,提高菌体对醋酸的耐受性,从而提高菌体浓度和产酸速率。  相似文献   

7.
木糖发酵生产2,3-丁二醇条件的优化   总被引:1,自引:1,他引:0  
利用一株肺炎克雷伯氏菌发酵木糖生产2,3-丁二醇,运用单因素试验和四因素三水平L9(34)正交试验设计的方法,探讨发酵pH、温度、装液量和转速对2,3-丁二醇产量的影响.结果表明:在木糖浓度80 g/L、接种量6%(体积分数)、初始pH值6.0、转速120 r/min、装液量80mL/250mL、35℃的条件下发酵84h,木糖利用率为90%,2,3-丁二醇的质量浓度为33.0g/L,得率为0.46g,g,达到理论值的92%.  相似文献   

8.
通过研究发酵过程中溶氧、生物量、腈水合酶活力以及残糖的变化规律和搅拌速度、通气量、接种量及诱导剂对产腈水合酶的影响,确立了5L发酵罐中Rhodococcus sp.SHZ-1腈水合酶的高酶活发酵工艺参数。结果表明,发酵过程中溶氧控制在30%以上有利于菌体快速生长和腈水合酶的合成。在pH7.2,温度30℃的发酵条件下,适宜的腈水合酶合成工艺条件为:接种量10%,通气量1.0vvm,搅拌速度采用由初始的200r/min调至500r/min的变速调控方式,同时于48h补加产酶诱导剂,发酵液腈水合酶的最高酶活力达到了9500U/mL,是摇瓶培养时最高酶活力8208U/mL的1.2倍,且比未进行工艺优化时最大产酶期缩短了20~24h,其最佳产酶期为52~60h。  相似文献   

9.
毛勇  毛健  李华钟  孟祥勇 《食品科学》2013,34(1):155-159
以双孢蘑菇(Agaricus bisporus MJ-0811)为实验菌种,采用5L自控式发酵罐培养研究溶氧控制条件(搅拌转速和通气量)对双孢菇发酵过程的影响,考察发酵过程中菌体生物量、胞外多糖产量、相对溶氧、葡萄糖含量的变化。结果表明:搅拌转速和通气量对双孢菇的菌体生长和胞外多糖分泌具有显著的影响,并得出较佳的培养条件为:温度25℃、搅拌转速160r/min、通气量0.9vvm,此条件下,培养5d,菌体生物量最高达20.81g/L,胞外多糖产量最高达3.75g/L。  相似文献   

10.
毛健  马海乐 《食品科学》2009,30(23):377-382
研究摇瓶灵芝菌体液态深层发酵温度和初始pH 值,在此基础上进行5L 发酵罐批次培养,研究发酵过程pH 值控制、溶氧控制对灵芝菌体生长和灵芝胞外多糖的影响。结果表明:发酵温度30℃,初始pH 值为6.0;过程pH 值控制策略:菌体生长前期(0~40h)控制pH 值为5.5,40~48h 控制pH 5.0,48h 后至发酵结束控制pH4.5;溶氧控制策略为:搅拌转速160r/min,通风量0.75vvm。优化后的验证实验结果:灵芝菌体生物量最高达到19.7g/L,胞外多糖最高达到3.23g/L,较优化前灵芝菌体生物量12.8g/L 和灵芝胞外多糖2.39g/L 分别提高了53.9% 和35.1%。  相似文献   

11.
以橄榄油为唯一碳源,采用油脂同化平板从食堂废弃物中筛选出一株产脂肪酶菌株HFE722。通过测定与分析该菌株16S rRNA基因序列,鉴定该菌株为芽孢杆菌(Bacillus sp.)。菌株HFE722在初始条件(发酵温度30 ℃,接种量为1%,自然pH,装液量为100 mL/250 mL,摇床转速为200 r/min)下培养36 h,测得发酵液上清液脂肪酶酶活为2.17 U/mL。优化后所得菌株HFE722产酶的最适发酵条件为:发酵温度30 ℃,发酵周期为36 h,接种量为1%(V/V),初始pH 7.0,装液量为50 mL/250 mL,摇床转速为160 r/min。在最佳发酵条件下,发酵液上清液酶活可达到5.8 U/mL,酶活较优化前提高了167.28%。  相似文献   

12.
本文以木糖为唯一碳源从土壤中筛选得到可以耐受高浓度木糖的菌株,再经过复筛选出一株高产木糖醇的酵母菌株Y-9。经高效液相色谱(HPLC)和红外扫描分析,确定菌株Y-9发酵利用木糖转化得到的主要产物为木糖醇。通过单因素实验、正交试验等手段,对菌株Y-9发酵产木糖醇的培养基组分和发酵条件进行了优化,进一步提高了目的菌株的木糖醇产率和转化率,确定了菌株Y-9摇瓶发酵木糖转化木糖醇的最优培养基和发酵条件。在木糖初始浓度为200 g/L,氮源为酵母膏3.0 g/L,硫酸铵2.0 g/L,玉米浆10.0 mL/L,硫酸镁0.1 g/L,初始pH为6.0,转速为180 r/min,接种量为4%的条件下,菌株Y-9的木糖醇产率为160 g/L左右,木糖醇生成速率为1.67 g/L.h,木糖/木糖醇转化率达到80%以上,是一株具有良好工业化研究开发价值的木糖醇生产菌株。  相似文献   

13.
徐洲  尹礼国  张超  魏琴 《食品科学》2014,35(17):165-169
以岩桂内生真菌交链孢霉(Alternaria)LJX27为研究对象,通过单因素试验研究各发酵工艺因素对黄樟素产量的影响,在此基础上通过二次通用旋转组合设计和响应面法优化黄樟素发酵工艺参数。结果表明:交链孢霉LJX27在初始pH 8、发酵温度 24 ℃、转速200 r/min、培养5 d的条件下,黄樟素产量最高,达2.13 g/L,比优化前黄樟素的产量提高了67.72%。各因素对黄樟素产量的影响大小为初始pH值>发酵时间>发酵温度>转速。该回归模型可以用于优化黄樟素的发酵条件。  相似文献   

14.
里氏木霉(Trichoderma reesei)产纤维素酶液态发酵条件的研究   总被引:1,自引:0,他引:1  
对纤维素酶高产菌株里氏木霉(Trichoderma reesei)ZU03产纤维素酶的液态发酵条件进行了研究,确定了适宜的培养基配方和最佳发酵工艺条件。最优培养基配方及发酵条件为:培养基起始pH4.5,C/N8∶1,纸浆浓度30g/L,培养温度28℃,接种量10%(v/v),摇床转速150r/min,培养时间4d。在此优化发酵条件下,摇瓶发酵液中的纤维素酶FPA活力达11.67IU/mL,比初始发酵条件下酶活力提高近3倍。同样在此优化条件下还进行了5m3罐的中试,FPA活力达8.62Iu/mL。  相似文献   

15.
对诱变过的产胆固醇氧化酶的类芽孢杆菌(Paenibacillus sp.X534)在最适培养基进行了发酵条件的优化,确定其最适发酵条件为起始pH值为8,接种量8%,装液量16%,摇瓶转速180r/min,培养温度34℃,发酵时间50h。优化之后胆固醇氧化酶活达到约580U/L,比优化前提高了约1.5倍。  相似文献   

16.
采用正交试验确定大肠杆菌BL21 (DE3)产β-环糊精转移酶的发酵条件.结果表明,生产β-环状糊精转移酶的最适条件为:接种量1%,100mL三角瓶装液量15mL,初始pH值为7.0,Ca2+浓度为1.25mmol/L,Mg2+浓度为2.50mmol/L,温度控制在37℃,转速控制为150r/min.当OD600达到1.4时,加入终浓度5.0g/L的α-乳糖,转速提高至170r/min,37℃诱导12h后过滤,β-CGTase酶活最高可达16.3μ/mL.  相似文献   

17.
以核桃粕为原料,以核桃多肽含量为考察指标,黑曲霉发酵产核桃多肽.通过单因素和响应面分析法确定黑曲霉发酵核桃粕产核桃多肽的最优发酵条件.结果表明,最优发酵条件为:发酵温度为30℃,发酵时间为48h、摇床转速为200r/min、核桃粕浓度7%、pH=6、接种量11%,在此最佳发酵条件下核桃多肽含量为22.33Lg/mL.  相似文献   

18.
以大肠杆菌(Escherichia coli)为指示菌,抑菌活性为主要考察指标,优化枯草芽孢杆菌(Bacillus subtilis)ZX-11的培养条件,并对其代谢产物的抑菌谱及抑菌特性进行研究。结果表明,菌株ZX-11的菌体生长和抑菌活性具有半偶联特性,确定最优初始pH值为7.0,接种量为4%,同时发现,适宜菌体生长和抑菌物质合成的最适温度和转速不一致。基于此,提出两阶段培养模式:发酵0~12 h,37 ℃、210 r/min条件下培养,使菌体快速繁殖;发酵12 h后,切换为31 ℃、240 r/min,强化抑菌物质合成。在此条件下,菌株ZX-11对E. coli的抑菌性能(抑菌圈直径30 mm)比优化前、单一培养模式31 ℃、210 r/min,31 ℃、240 r/min,37 ℃、210 r/min,37 ℃、240 r/min分别提高50%、15%、7%、20%和11%。菌株ZX-11的代谢产物具有较广的抑菌谱,具有较强的耐酸、耐碱、耐高温能力,且对蛋白酶具有一定的稳定性。  相似文献   

19.
该研究以黑曲霉(Aspergillus niger)SL2K为研究对象,对其产柚苷酶的液态发酵条件进行优化。 通过单因素试验对碳源、氮 源、诱导物、接种量、初始pH值和培养时间进行考查,在单因素基础上,选取麸皮粉添加量、蛋白胨添加量、接种量、初始pH值4个因素 进行4水平正交试验优化。 结果表明,优化后的产酶发酵条件为麸皮粉添加量3%,蛋白胨添加量5%,接种量8%,初始pH值为5.0,鼠李 糖0.08%、KH2PO4 1 g/L,KCl 0.5 g/L,MgSO·4 7H2O 0.5 g/L,FeSO4 0.01 g/L,装液量为100 mL/250 mL,摇床转速180 r/min,培养温度28 ℃, 培养时间96 h。 在此优化条件下,柚苷酶活力为233.89 U/mL,是优化前的2.13倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号