首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present paper, we introduce the Euler sequence space consisting of all sequences whose Euler transforms of order r are in the space ?p of non-absolute type which is the BK-space including the space ?p and prove that the spaces and ?p are linearly isomorphic for 1 ? p ? ∞. Furthermore, we give some inclusion relations concerning the space . Finally, we determine the α-, β- and γ-duals of the space for 1 ? p ? ∞ and construct the basis for the space , where 1 ? p < ∞.  相似文献   

2.
3.
4.
5.
6.
7.
8.
A closed interval is an ordered pair of real numbers [xy], with x ? y. The interval [xy] represents the set {i ∈ Rx ? i ? y}. Given a set of closed intervals I={[a1,b1],[a2,b2],…,[ak,bk]}, the Interval-Merging Problem is to find a minimum-cardinality set of intervals M(I)={[x1,y1],[x2,y2],…,[xj,yj]}, j ? k, such that the real numbers represented by equal those represented by . In this paper, we show the problem can be solved in O(d log d) sequential time, and in O(log d) parallel time using O(d) processors on an EREW PRAM, where d is the number of the endpoints of I. Moreover, if the input is given as a set of sorted endpoints, then the problem can be solved in O(d) sequential time, and in O(log d) parallel time using O(d/log d) processors on an EREW PRAM.  相似文献   

9.
We investigate the periodic nature of the positive solutions of the fuzzy difference equation , where k, m are positive integers, A0, A1, are positive fuzzy numbers and the initial values xi, i = −d, −d + 1, … , −1, d = max{km}, are positive fuzzy numbers. In addition, we give conditions so that the solutions of this equation are unbounded.  相似文献   

10.
11.
We present a Θ(log2M)-time algorithm that determines an unknown rational number x in by asking at most 2log2M+O(1) queries of the form “Is x?y?”.  相似文献   

12.
13.
14.
15.
If a partial differential equation is reduced to an ordinary differential equation in the form u(ξ)=G(u,θ1,…,θm) under the traveling wave transformation, where θ1,…,θm are parameters, its solutions can be written as an integral form . Therefore, the key steps are to determine the parameters' scopes and to solve the corresponding integral. When G is related to a polynomial, a mathematical tool named complete discrimination system for polynomial is applied to this problem so that the parameter's scopes can be determined easily. The complete discrimination system for polynomial is a natural generalization of the discrimination △=b2−4ac of the second degree polynomial ax2+bx+c. For example, the complete discrimination system for the third degree polynomial F(w)=w3+d2w2+d1w+d0 is given by and . In the paper, we give some new applications of the complete discrimination system for polynomial, that is, we give the classifications of traveling wave solutions to some nonlinear differential equations through solving the corresponding integrals. In finally, as a result, we give a partial answer to a problem on Fan's expansion method.  相似文献   

16.
If is an eigenvalue of a time-delay system for the delay τ0 then is also an eigenvalue for the delays τk?τ0+k2π/ω, for any kZ. We investigate the sensitivity, periodicity and invariance properties of the root for the case that is a double eigenvalue for some τk. It turns out that under natural conditions (the condition that the root exhibits the completely regular splitting property if the delay is perturbed), the presence of a double imaginary root for some delay τ0 implies that is a simple root for the other delays τk, k≠0. Moreover, we show how to characterize the root locus around . The entire local root locus picture can be completely determined from the square root splitting of the double root. We separate the general picture into two cases depending on the sign of a single scalar constant; the imaginary part of the first coefficient in the square root expansion of the double eigenvalue.  相似文献   

17.
18.
19.
20.
Solutions of numerically ill-posed least squares problems for ARm×n by Tikhonov regularization are considered. For DRp×n, the Tikhonov regularized least squares functional is given by where matrix W is a weighting matrix and is given. Given a priori estimates on the covariance structure of errors in the measurement data , the weighting matrix may be taken as which is the inverse covariance matrix of the mean 0 normally distributed measurement errors in . If in addition is an estimate of the mean value of , and σ is a suitable statistically-chosen value, J evaluated at its minimizer approximately follows a χ2 distribution with degrees of freedom. Using the generalized singular value decomposition of the matrix pair , σ can then be found such that the resulting J follows this χ2 distribution. But the use of an algorithm which explicitly relies on the direct solution of the problem obtained using the generalized singular value decomposition is not practical for large-scale problems. Instead an approach using the Golub-Kahan iterative bidiagonalization of the regularized problem is presented. The original algorithm is extended for cases in which is not available, but instead a set of measurement data provides an estimate of the mean value of . The sensitivity of the Newton algorithm to the number of steps used in the Golub-Kahan iterative bidiagonalization, and the relation between the size of the projected subproblem and σ are discussed. Experiments presented contrast the efficiency and robustness with other standard methods for finding the regularization parameter for a set of test problems and for the restoration of a relatively large real seismic signal. An application for image deblurring also validates the approach for large-scale problems. It is concluded that the presented approach is robust for both small and large-scale discretely ill-posed least squares problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号