首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 890 毫秒
1.
采用高温固相法成功制备了Li2x?ySr1?xTi1?yNbyO3 (x=3y/4, y=0.25, 0.5, 0.6, 0.7, 0.75, 0.8)锂离子固体电解质,并通过X射线衍射(XRD)、扫描电子显微镜(SEM)、交流阻抗图谱、恒电位极化等分别研究了各个组分的晶体结构、微观形貌、离子电导率和电子电导率。XRD显示当y≤0.70时,材料为立方钙钛矿型结构,几乎没有杂质相生成。SEM表明随着掺杂含量的增加材料的晶粒尺寸逐渐增大。Li0.35Sr0.475Ti0.3Nb0.7O3锂离子固体电解质有着高离子电导率,为3.62×10?5 S·cm?1,其电子电导率为2.55×10?9 S·cm?1,活化能仅为0.29 eV。使用以Li0.35Sr0.475Ti0.3Nb0.7O3为隔膜的LiFePO4/Li半电池经过100圈循环后,放电比容量仍有93.9 mA·h·g?1,容量保持率为90.72%。   相似文献   

2.
采用固相反应法制得Al掺杂的固态电解质材料Li6.4Al0.2La3Zr2O12(LALZO),利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和交流阻抗谱等检测手段表征了所得样品的晶体结构与电化学性能,研究了不同烧结方式对材料的结构、微观形貌和电化学性能的影响,探究了固相反应过程机理.研究结果表明:混合料加热到425℃时开始生成立方相LALZO,更高温度下立方相LALZO经由Li0.5Al0.5La2O4和Li2ZrO3等中间相转化生成;425℃预反应后再经1 000℃烧结可得到纯的立方相LALZO;与聚环氧乙烷(PEO)组成复合固态电解质时,该材料在30℃下离子电导率可达3.61×10-5 S/cm,具有良好的电化学性能.  相似文献   

3.
以Al(NO3)3·9H2O、Ca(NO)2·4H2O、C8H20O4Si为原料, 采用高分子网络法制备出成分均匀、粒度分布为3~7μm、高活性的CaO–Al2O3–SiO2复合烧结助剂; 将质量分数为3%、5%、7%、9%的CaO–Al2O3–SiO2复合烧结助剂添加到Al2O3和ZrO2原料粉体中, 经干压成型, 在1450℃烧结温度、保温4h的工艺条件下进行常压烧结制备得到ZrO2/Al2O3复相陶瓷试样, 研究烧结助剂添加量对复相陶瓷力学性能和显微组织结构的影响。结果表明:当添加质量分数为5%的CaO–Al2O3–SiO2复合烧结助剂时, ZrO2/Al2O3复相陶瓷的综合性能最达到佳, 相对密度为94%, 显微维氏硬度为1204 MPa, 抗弯强度为321 MPa, 断裂韧性为4.52 MPa·m1/2。  相似文献   

4.
利用氢氟酸(HF)刻蚀MAX(Ti3AlC2)相获得一种新型二维层状材料MXene(Ti3C2Tx),利用液相插层法扩大MXene材料层间距,然后在MXene表面分别负载纳米片状(NSV)和纳米带状(NBV)的五氧化二钒(V2O5)。利用X射线衍射(XRD)、比表面积测试分析(BET)和高分辨场发射扫描电镜(FESEM)等手段对复合材料进行了结构表征。结果表明:MXene层间距增加;且两种形貌的五氧化二钒均匀的负载在MXene表面。这两种纳米复合材料的比表面积比MXene高,意味着它们可以为电化学反应提供更多的活性位点。利用多种电化学技术对V2O5,MXene和不同V2O5/MXene纳米复合材料在1.0 mol·L?1 Na2SO4和1.0 mol·L?1 LiNO3电解液中进行了电化学性能测试。结果表明:当电流密度为1 A·g?1时,在1.0 mol·L?1 Na2SO4电解液中MXene,V2O5,NSV/MXene和NBV/MXene的比电容分别为8.1,15.7,96.8和88.5 F·g?1;在1.0 mol·L?1 LiNO3电解液中NSV/MXene和NBV/MXene的比电容分别为64.6,46.7,180.0和114.0 F·g?1。表明所制备的NSV/MXene纳米复合材料是一种有研究和开发潜力的超级电容器电极材料。   相似文献   

5.
以Na2MoO4·2H2O、NiSO4·6H2O和MnO2为原料, 采用水热法成功制备了类松果状NiMoO4/MnO2复合材料.通过X射线衍射、扫描电子显微镜、恒电流充放电、循环伏安和交流阻抗对材料进行表征.结果表明, MnO2的最佳质量分数为10%, 所得NiMoO4/MnO2复合材料具有类松果状形貌, 其颗粒直径为200~600 nm, 且表面粗糙、多孔; 在1 A·g-1的电流密度下, MnO2质量分数为0、5%、10%、15%、20%时, 所得复合材料NM0、NM5、NM10、NM15和NM20的放电比电容分别为260、248、650、420和305 F·g-1.在电流密度为10 A·g-1下, 最佳样品NM10复合材料的首次放电比容量为102 F·g-1, 经过100次循环后, 其放电比电容稳定在147 F·g-1.该性能的提高, 主要是由于MnO2的引入弥补了NiMoO4单一材料存在的不足, 从而达到协同增效的作用.   相似文献   

6.
采用固相烧结工艺合成了层状高镍无钴正极材料LiNi0.94Mn0.04Al0.02O2(NMA),并研究了不同烧结温度对NMA正极材料的晶体结构、微观形貌和电化学性能的影响。结果表明,当烧结温度过低时,NMA正极材料的结晶度偏低,并在表面形成残锂。烧结温度过高则会导致层状结构变差和电极表面有害副反应增多。在最佳烧结温度750℃下合成的NMA-750材料具有良好的颗粒形貌、最少的锂镍混排和最完整的层状结构,同时具有最佳的电化学性能:首圈放电比容量(3.0~4.5 V,1 C)为199.5 mA·h/g,循环100圈后容量保持率可达79.04%;在5 C下仍具有147.6 mA·h/g的放电比容量,倍率性能优良。  相似文献   

7.
采用溶液燃烧合成法制备了La2O3掺杂纳米钨(W)粉,分析了La2O3掺杂纳米W粉的致密化行为及La2O3对纳米W粉致密化行为的影响,研究了烧结后合金的显微组织形貌、导热性能及显微硬度。结果表明,La2O3会显著抑制纳米W粉的致密化速度,纯W粉在1350 ℃烧结后的相对密度可达到96.2%,而La2O3掺杂纳米W粉在1500 ℃烧结后的相对密度仅为95.0%。在1500 ℃烧结后的La2O3掺杂W合金的晶粒尺寸为0.57 μm,比纯W粉烧结合金的晶粒尺寸小一个数量级,因此其导热性能也较纯W粉烧结合金有所降低,但是显微硬度得到显著提升。  相似文献   

8.
采用碳酸盐共沉淀工艺,通过控制结晶合成了显微形貌呈现较大差异的Li[Li0.17Mn0.58Ni0.25]O2样品,并对样品进行了X射线衍射、高分辨透射电镜、场发射扫描电镜分析以及恒电流充放电和交流阻抗测试.合成的Li[[Li0.17Mn0.58Ni0.25]O2材料均具有良好的结晶度,可标定为α-NaFeO2结构(空间群R3m).其中,具有一次颗粒沿六方棱柱长轴方向形成"簇形"团聚的材料比其他样品具有优异的倍率性能,在电压范围为2.5-4.8V,倍率分别为0.5C、1.0C和3.0C时,Li[[Li0.17Mn0.58Ni0.25]O2材料首次放电比容量分别达到205.4、195.5和158.5mA.h·g-1,100次循环后放电比容量保持在203.5、187.2和151.2mA·h·g-1,容量保持率分别为99%、96%和95%.Li[[Li0.17Mn0.58Ni0.25]O2材料特殊的颗粒团聚状态降低了界面的电荷转移阻抗,材料的倍率性能显著提高.同时,文中对Li[[Li0.17Mn0.58Ni0.25]O2材料在不同截止电压下的电化学性能进行了对比分析.   相似文献   

9.
解决镍基正极材料LiNi0.8Co0.1Mn0.1O2的电化学循环稳定性和高温循环性能是其产业化推广应用的关键。研究了掺杂铌改性高镍正极材料,优化材料的电化学性能,提升循环稳定性。首先以硫酸盐为原料,在N2保护气氛下,采用共沉淀法合成三元球形Ni0.8Co0.1Mn0.1(OH)2前驱体,通过高温固相反应与LiOH·H2O,Nb2O5合成Li(Ni0.8Co0.1Mn0.11-xNbxO2(x=0,0.01,0.02,0.03)系列正极材料。X射线衍射结果表明,Nb5+离子可少量进入正极材料晶格,并在正极材料表面形成化学稳定性好的Li3NbO4。当x=0.02时,在室温25 ℃,电压2.75~4.2 V,0.2 C倍率下首次放电比容量为172.9 mAh/g,100次循环后容量保持率为97.47%,在50 ℃,0.5 C倍率下循环20次容量基本不变,平均放电比容量为183.7 mAh/g,且该样品具有较好的倍率性能。   相似文献   

10.
以碳酸锂(Li2CO3)为锂源, 磷酸二氢铵(NH4H2PO4)为磷源, 草酸亚铁(FeC2O4·2H2O)为铁源, 柠檬酸(C6H8O7·H2O)为碳源, 采用固相反应法制备橄榄石晶型磷酸铁锂。利用X射线衍射仪, 扫描电子显微镜, 能谱仪, 比表面积分析仪和电化学测试等设备和方法对磷酸铁锂材料的物相组成、结构、形貌和电化学性能进行表征, 研究煅烧温度和保温时间对磷酸铁锂电化学性能的影响, 并通过添加碳对试样进行包覆改性。结果表明, 在煅烧温度为700℃, 保温时间为12 h条件下制备的磷酸铁锂正极材料的电化学性能良好, 碳包覆能有效改善电极材料的性能。包覆碳后的磷酸铁锂电极材料在0.2C充电电流密度下首次放电比容量可达319.2 mAh·g-1; 在1C充电电流密度下循环100次后, 放电比容量保持在168.1 mAh·g-1。  相似文献   

11.
以CoCl2·6H2O和硫脲(CH4N2S)为原料,采用一步水热法,通过改变钴硫摩尔比和添加表面活性剂制备出两种不同形貌(3D花状和球状)的硫化钴(CoS)锂离子电池负极材料。结果表明,当钴硫摩尔比为1:1时,在180℃下水热反应12 h可得到3D花状CoS负极材料,其三维立体花状结构由纳米级层片组成;当钴硫摩尔配比为1:1,添加十六烷基三甲基溴化铵(CTAB),在180℃下反应12 h可制得由小颗粒聚结成的球状CoS负极材料。在0.1C电流密度下,3D花状CoS电池首次放电比容量为752m Ah·g^-1,并且具有良好的倍率性能;在1C电流密度下,经过200圈的循环测试后,3D花状CoS电池仍有较高的放电比容量(185 mAh·g^-1),远高于球状CoS电池(118.6 mAh·g^-1),并且没有衰减的趋势。  相似文献   

12.
为进一步提升钛酸锂材料的性能, 本文在传统静电纺丝技术的基础上, 将纺丝喷头改进成内外嵌套的同轴喷头, 以两种溶液的形式进行同轴共纺, 得到了具有空心结构的钛酸锂纤维丝.将其与传统静电纺丝法制备的实心结构钛酸锂纤维丝进行对比, 结果表明: 空心钛酸锂材料粒度均一、无团聚现象, 材料具有明显的空心结构, 结晶性能良好, 比表面积是实心结构的1.3倍.形貌结构的改善极大地提高了空心钛酸锂材料的电化学性能, 表现为小倍率下二者的放电比容量接近理论比容量, 但在20C倍率下空心结构的钛酸锂材料优于实心钛酸锂, 仍可达到130 mA·h·g-1, 循环200周后容量保持率仍达98%, 具有良好的稳定性; 循环伏安和交流阻抗曲线也表明: 空心结构使得钛酸锂材料的极化程度减少, 电化学反应阻抗降低, 更有利于电化学反应的进行.   相似文献   

13.
以Fe2O3为铁源,NH4H2PO4为磷源,Li2CO3为锂源,蔗糖为碳添加剂,应用碳热还原一步烧结法制备了LiFePO4/C复合粉体材料,系统的研究了烧结温度、烧结时间和锂铁比对样品电化学性能的影响。研究结果表明,对电化学性能影响因素最大的是烧结温度、其次是锂铁比,最后是烧结时间。当烧结温度为700℃、锂铁比为1.00、烧结时间为12 h时样品所得的电化学性能最佳,它在0.1C,0.5C和1.0C倍率下的首次放电比容量分别为130.1,118.2和105.6 mAh.g-1,经20次循环后,不同倍率下样品的容量的保持率分别为99.8%,98.9%和97.5%。  相似文献   

14.
安富强  何冬林  庞铮  李平 《工程科学学报》2019,41(10):1307-1314
以沥青为软碳原料,商业石墨的载体材料,通过高温热解法成功合成了硅/石墨/碳复合材料,同时原位生成了微米尺度的碳纤维.该硅/石墨/碳复合材料具有诸多优点,石墨片层堆叠之间的空隙为硅的体积膨胀提供了有效的空间,沥青热解碳材料的包覆能一定程度抑制硅基材料的体积效应和提高其电子电导率,同时微米级的碳纤维能提高材料的长程导电性和结构稳定性,从而极大的改善负极材料循环性能.通过电化学测试表明,硅/石墨/碳复合材料中硅/石墨/碳复合负极材料在200 mA·g-1电流密度下具有650 mA·h·g-1的可逆容量,在200 mA·g-1电流密度下经过500圈循环后容量保持率为92.8%,每圈的容量衰减率仅为0.014%,展现了优异的循环性能.   相似文献   

15.
通过低温还原,以Si2OCl6为原料,以Na溶液为还原剂,在液氨溶液中成功合成了纳米非晶态Si2N2O粉末.在不加任何烧结助剂的条件下,通过放电等离子体烧结,得到了致密的陶瓷块体.制得的纳米非晶粉末颗粒尺寸约为20 nm,XRD结果显示样品在1 100 ℃开始晶化.进一步考察了不同烧结温度下陶瓷的抗氧化性和力学性能,致密块体在1 600 ℃下经过20 h氧化后,其增重仅有1.1 %,烧结块体的力学性能随着烧结温度的增加而迅速增加,当烧结温度高于1 500 ℃时,继续增加烧结温度力学性能的增加趋势变得平缓. 1 500 ℃烧结样品的维氏硬度、强度和断裂韧性分别达到了19.6 GPa, 440 MPa和4.1 MPa·m1/2.   相似文献   

16.
采用原位生长法, 以硝酸钴和氨水为原料、硝酸铵为生长剂, 制备生长在泡沫镍上的Co (OH)2电极材料, 并在此基础上对其进行镍添加改性, 旨在得到比电容高、循环性能好的Co–Ni氢氧化物电极材料。通过X射线衍射仪、扫描电子显微镜对Co–Ni氢氧化物电极材料进行物相和微观形貌分析; 通过循环伏安、恒流充放电和交流阻抗等方法对Co–Ni氢氧化物电极材料的电化学性能进行分析和表征。结果表明: 镍添加使材料从原有的Co (OH) 2晶相变为Co (OH) 2和Ni (OH) 2双晶相材料, 使原有的簇状结构转变为更利于离子扩散的花状结构, 进而促进材料电化学性能的提高。当Co/Ni摩尔比为3:1时制得的花状Co–Ni氢氧化物电极材料的电化学性能最好, 在5 m V·s-1扫速下的比电容值为3674.7 F·g-1, 在5 A·g-1电流密度下的比电容值为1450.0 F·g-1, 在20 A·g-1电流密度下循环5000次的比电容保持率为77.1%。  相似文献   

17.
在Gleeble-3800热模拟试验机上以微碳钢为研究对象,研究了在350 ℃、400 ℃、450 ℃、500 ℃、550 ℃、600 ℃、650 ℃、700 ℃、750 ℃和0.01 s-1、0.1 s-1、1 s-1条件下的热变形行为,并分析变形后的组织特征,构建温变形本构方程.结果表明,微碳钢的流变应力在变形初期随着应变的增大而增加,而在出现峰值后逐渐趋于平稳,当温度高于750 ℃时会出现明显的加工软化; 运用Sellars-Tegart方程,通过拟合模型中各参数, 获得微碳钢的热变形激活能Q为364.894 kJ/mol,并建立了流变应力模型.   相似文献   

18.
退火温度对TA1钛管材组织和性能的影响   总被引:1,自引:1,他引:0  
将冷轧加工的12 mm×12.5 mm TA1管材分别加热至450,475,490,500,550,600,650,700℃后保温90 min,随炉冷却,研究不同热处理温度对管材显微组织和力学性能的影响.结果表明,冷加工的TA1管材,在450℃以下热处理时材料的性能和显微组织变化不明显,在475~490℃之间热处理时材...  相似文献   

19.
通过冻干-煅烧合成了一氧化锰/石墨烯(MnO/rGO)复合材料,并将其用作锂离子电池负极材料.在500 mA·g-1的电流密度下,MnO/rGO复合材料表现出高达830 mAh·g-1的可逆容量,且在充放电循环160圈后,其可逆容量依然高达805 mAh·g-1.倍率测试结果显示,循环225圈后,在2.0 A·g-1的电流密度下,其可逆容量高达412 mAh·g-1.复合材料中的石墨烯在提高材料导电性的同时有效地缓解了一氧化锰充放电过程中的体积膨胀.通过对比容量-电压的微分分析,发现复合材料超出一氧化锰理论容量的部分是由形成了更高价态的锰引起的.MnO/rGO复合材料比纯一氧化锰(p-MnO)更容易出现高价态的锰,可能是因为rGO上残留的氧为电极反应提供了额外所需的氧源.该一氧化锰/石墨烯复合材料因其简单绿色的合成过程及优异的电化学性质,有望在未来的锂电负极中得到广泛的实际应用.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号