首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.

Background

End stage renal disease (ESRD) is associated with defective T-cell mediated immunity. A diverse T-cell receptor (TCR) Vβ repertoire is central to effective T-cell mediated immune responses to foreign antigens. In this study, the effect of ESRD on TCR Vβ repertoire was assessed.

Results

A higher proportion of ESRD patients (68.9 %) had a skewed TCR Vβ repertoire compared to age and cytomegalovirus (CMV) – IgG serostatus matched healthy individuals (31.4 %, P?<?0.001). Age, CMV serostatus and ESRD were independently associated with an increase in shifting of the TCR Vβ repertoire. More differentiated CD8+ T cells were observed in young ESRD patients with a shifted TCR Vβ repertoire. CD31-expressing naive T cells and relative telomere length of T cells were not significantly related to TCR Vβ skewing.

Conclusions

ESRD significantly skewed the TCR Vβ repertoire particularly in the elderly population, which may contribute to the uremia-associated defect in T-cell mediated immunity.
  相似文献   

2.

Objectives

Targeted therapy of Philadelphia-positive ALL and CML patients using imatinib (IM) has caused significant changes in treatment course and has increased the survival of patients. A small group of patients show resistance to IM. Acquired mutations in tyrosine kinase domain of BCR-ABL protein are a mechanism for development of resistance. T315I is one of the most common acquired mutations in this domain, which occurs in ATP binding site and inhibits the formation of hydrogen bond with IM. The aim of this study was to evaluate the prevalence of this mutation in BCR/ABL-positive CML and ALL patients.

Methods

To conduct this study, 60 BCR-ABL-positive patients (including 50 CML and 10 ALL patients) who were subject to treatment with IM were selected. After taking the samples, presence of T315I mutation was assessed using ARMS-PCR on cDNA and its polymorphism was evaluated by sequencing.

Results

The results showed that among 60 patients, only three patients had T315I mutation, which was detected using ARMS technique. The three patients bearing mutation were afflicted with CML and no significant association was found between blood parameters with duration of treatment in presence of mutation.

Conclusions

The mutation was found in three CML patients, which indicated lower likelihood and diagnostic value of this mutation in ALL patients. Given the negative direct sequencing results in T315I patients, it can be concluded that ARMS-PCR is a more sensitive technique when the number of cancer cells is low in patients during treatment.
  相似文献   

3.

Background

T cell receptor (TCR) molecules are involved in the adaptive immune response as they distinguish between self- and foreign-peptides, presented in major histocompatibility complex molecules (pMHC). Former studies showed that the association angles of the TCR variable domains (Vα/Vβ) can differ significantly and change upon binding to the pMHC complex. These changes can be described as a rotation of the domains around a general Center of Rotation, characterized by the interaction of two highly conserved glutamine residues.

Methods

We developed a computational method, DynaDom, for the prediction of TCR Vα/Vβ inter-domain and TCR/pMHC orientations in TCRpMHC complexes, which allows predicting the orientation of multiple protein-domains. In addition, we implemented a new approach to predict the correct orientation of the carboxamide endgroups in glutamine and asparagine residues, which can also be used as an external, independent tool.

Results

The approach was evaluated for the remodeling of 75 and 53 experimental structures of TCR and TCRpMHC (class I) complexes, respectively. We show that the DynaDom method predicts the correct orientation of the TCR Vα/Vβ angles in 96 and 89% of the cases, for the poses with the best RMSD and best interaction energy, respectively. For the concurrent prediction of the TCR Vα/Vβ and pMHC orientations, the respective rates reached 74 and 72%. Through an exhaustive analysis, we could show that the pMHC placement can be further improved by a straightforward, yet very time intensive extension of the current approach.

Conclusions

The results obtained in the present remodeling study prove the suitability of our approach for interdomain-angle optimization. In addition, the high prediction rate obtained specifically for the energetically highest ranked poses further demonstrates that our method is a powerful candidate for blind prediction. Therefore it should be well suited as part of any accurate atomistic modeling pipeline for TCRpMHC complexes and potentially other large molecular assemblies.
  相似文献   

4.

Background

Recent studies have shown that gamma interferon (IFN-γ) synergizes with the innate IFNs (IFN-α and IFN-β) to inhibit herpes simplex virus type 1 (HSV-1) replication in vitro. To determine whether this phenomenon is shared by other herpesviruses, we investigated the effects of IFNs on human cytomegalovirus (HCMV) replication.

Results

We have found that as with HSV-1, IFN-γ synergizes with the innate IFNs (IFN-α/β) to potently inhibit HCMV replication in vitro. While pre-treatment of human foreskin fibroblasts (HFFs) with IFN-α, IFN-β or IFN-γ alone inhibited HCMV plaque formation by ~30 to 40-fold, treatment with IFN-α and IFN-γ or IFN-β and IFN-γ inhibited HCMV plaque formation by 163- and 662-fold, respectively. The generation of isobole plots verified that the observed inhibition of HCMV plaque formation and replication in HFFs by IFN-α/β and IFN-γ was a synergistic interaction. Additionally, real-time PCR analyses of the HCMV immediate early (IE) genes (IE1 and IE2) revealed that IE mRNA expression was profoundly decreased in cells stimulated with IFN-α/β and IFN-γ (~5-11-fold) as compared to vehicle-treated cells. Furthermore, decreased IE mRNA expression was accompanied by a decrease in IE protein expression, as demonstrated by western blotting and immunofluorescence.

Conclusion

These findings suggest that IFN-α/β and IFN-γ synergistically inhibit HCMV replication through a mechanism that may involve the regulation of IE gene expression. We hypothesize that IFN-γ produced by activated cells of the adaptive immune response may potentially synergize with endogenous type I IFNs to inhibit HCMV dissemination in vivo.  相似文献   

5.

Background

Upon repeated or chronic antigen stimulation, activated T cells undergo a T cell receptor (TCR)-triggered propriocidal cell death important for governing the intensity of immune responses. This is thought to be chiefly mediated by an extrinsic signal through the Fas-FasL pathway. However, we observed that TCR restimulation still potently induced apoptosis when this interaction was blocked, or genetically impaired in T cells derived from autoimmune lymphoproliferative syndrome (ALPS) patients, prompting us to examine Fas-independent, intrinsic signals.

Results

Upon TCR restimulation, we specifically noted a marked increase in the expression of BIM, a pro-apoptotic Bcl-2 family protein known to mediate lymphocyte apoptosis induced by cytokine withdrawal. In fact, T cells from an ALPS type IV patient in which BIM expression is suppressed were more resistant to restimulation-induced death. Strikingly, knockdown of BIM expression rescued normal T cells from TCR-induced death to as great an extent as Fas disruption.

Conclusion

Our data implicates BIM as a critical mediator of apoptosis induced by restimulation as well as growth cytokine withdrawal. These findings suggest an important role for BIM in eliminating activated T cells even when IL-2 is abundant, working in conjunction with Fas to eliminate chronically stimulated T cells and maintain immune homeostasis.

Reviewers

This article was reviewed by Dr. Wendy Davidson (nominated by Dr. David Scott), Dr. Mark Williams (nominated by Dr. Neil Greenspan), and Dr. Laurence C. Eisenlohr.  相似文献   

6.
7.

Background

Human mast cells are multifunctional cells capable of a wide variety of inflammatory responses. Baicalein (BAI), isolated from the traditional Chinese herbal medicine Huangqin (Scutellaria baicalensis Georgi), has been shown to have anti-inflammatory effects. We examined its effects and mechanisms on the expression of inflammatory cytokines in an IL-1β- and TNF-α-activated human mast cell line, HMC-1.

Methods

HMC-1 cells were stimulated either with IL-1β (10 ng/ml) or TNF-α (100 U/ml) in the presence or absence of BAI. We assessed the expression of IL-6, IL-8, and MCP-1 by ELISA and RT-PCR, NF-κB activation by electrophoretic mobility shift assay (EMSA), and IκBα activation by Western blot.

Results

BAI (1.8 to 30 μM) significantly inhibited production of IL-6, IL-8, and MCP-1 in a dose-dependent manner in IL-1β-activated HMC-1. BAI (30 μM) also significantly inhibited production of IL-6, IL-8, and MCP-1 in TNF-α-activated HMC-1. Inhibitory effects appear to involve the NF-κB pathway. BAI inhibited NF-κB activation in IL-1β- and TNF-α-activated HMC-1. Furthermore, BAI increased cytoplasmic IκBα proteins in IL-1β- and TNF-α-activated HMC-1.

Conclusion

Our results showed that BAI inhibited the production of inflammatory cytokines through inhibition of NF-κB activation and IκBα phosphorylation and degradation in human mast cells. This inhibitory effect of BAI on the expression of inflammatory cytokines suggests its usefulness in the development of novel anti-inflammatory therapies.  相似文献   

8.
Chronic myeloid leukemia (CML) is characterized by the presence of p210Bcr-Abl which exhibits an abnormal kinase activity. Selective Abl kinase inhibitors have been successfully established for the treatment of CML. Despite high rates of clinical response, CML patients can develop resistance against these kinase inhibitors mainly due to point mutations within the Abl protein kinase domain. Previously, we have identified oleic acid as the active component in the mushroom Daedalea gibbosa that inhibited the kinase activity of Bcr-Abl. Here, we report that the oleyl amine derivatives, S-1-(1-Hydroxymethyl-2-methyl-propyl)-3-octadec-9-enyl-urea [oleylaminocarbonyl-L-N-valinol,oroleylaminocarbonyl-S-2-isopropyl-N-ethanolamine,oleylamine-carbonyl-L-valinol] (cpd 6) and R-1-(1-Hydroxymethyl-2-methyl-propyl)-3-octadec-9-enyl-urea [oleylamineocarbonyl-D-N-valinol, oleylaminocarbonyl-R-2-isopropyl-N-ethanolamine, or oleylamine-carbonyl-D-valinol] (cpd 7), inhibited the activity of the native and T315I mutated Bcr-Abl. Furthermore, cpd 6 and 7 exhibited higher activity towards the oncogenic Bcr-Abl in comparison to native c-Abl in SupB15 Ph-positive ALL cell line.  相似文献   

9.

BACKGROUND:

Chronic myeloid leukemia (CML) is a clonal myeloproliferative expansion of primitive hematopoietic progenitor cells.

MATERIALS AND METHODS:

In the present study, CML samples were collected from various hospitals in Amritsar, Jalandhar and Ludhiana.

RESULTS:

Chromosomal alterations seen in peripheral blood lymphocytes of these treated and untreated cases of CML were satellite associations, double minutes, random loss, gain of C group chromosomes and presence of marker chromosome. No aberrations were observed in control samples. Karyotypic abnormalities have also been noted in the Ph-negative cells of some patients in disease remission.

CONCLUSION:

This is a novel phenomenon whose prognostic implications require thorough and systematic evaluation.  相似文献   

10.

Backgroud

Cancer stem cells (CSCs) are proposed to persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors. Development of specific therapies targeted at CSCs holds hope for the improvement of survival and quality of life of cancer patients, especially for sufferers of metastatic disease. This is particularly true in chronic myeloid leukemia (CML).

Methods

In this study, we isolated fetal liver kinase-1-positive (Flk1+) cells carrying the BCR/ABL fusion gene from the bone marrow of Philadelphia chromosome-positive (Ph+) patients with stem cells property. We examined their biological characteristics as well as immunological function and further detected the possible molecular mechanism involved in the leukemia genesis.

Results

We showed that CML patient-derived Flk1+CD31?CD34? MSCs had normal morphology, phenotype and karyotype but appeared impaired immunomodulatory function. The capacity of Flk1+CD31?CD34? MSCs from CML patients to inhibit T lymphocyte activation and proliferation was impaired in vitro. CML patient-derived MSCs have dampening immunomodulatory functions, suggesting that the dysregulation of hematopoiesis and immune response might originate from MSCs rather than HSCs. These Ph+ putative CML hemangioblast upregulated TGF-β1 and resultantly activated matrix metalloproteinase-9 (MMP-9) to enhance s-KitL and s-ICAM-1 secretion, which activated c-kit+ HSCs from the quiescent state to proliferative state. Further studies showed that phosphatidylinositol-3 kinase (PI3K)/Akt/nuclear factor (NF)-κB signaling pathway was involved in CML pathogenesis.

Conclusions

Flk1+CD31?CD34? MSCs that express BCR/ABL leukemia oncogene are CSCs of CML and they play a critical role in the progression of CML through PI3K/Akt/NF-κB/MMP-9/s-ICAM-1/s-KitL signaling pathway beyond HSCs.  相似文献   

11.

Background

Platelet-derived growth factor A (PDGF-A) signals solely through PDGF-Rα, and is required for fibroblast proliferation and transdifferentiation (fibroblast to myofibroblast conversion) during alveolar development, because pdgfa-null mice lack both myofibroblasts and alveoli. However, these PDGF-A-mediated mechanisms remain incompletely defined. At postnatal days 4 and 12 (P4 and P12), using mouse lung fibroblasts, we examined (a) how PDGF-Rα correlates with ki67 (proliferation marker) or alpha-smooth muscle actin (αSMA, myofibroblast marker) expression, and (b) whether PDGF-A directly affects αSMA or modifies stimulation by transforming growth factor beta (TGFβ).

Methods

Using flow cytometry we examined PDGF-Rα, αSMA and Ki67 in mice which express green fluorescent protein (GFP) as a marker for PDGF-Rα expression. Using real-time RT-PCR we quantified αSMA mRNA in cultured Mlg neonatal mouse lung fibroblasts after treatment with PDGF-A, and/or TGFβ.

Results

The intensity of GFP-fluorescence enabled us to distinguish three groups of fibroblasts which exhibited absent, lower, or higher levels of PDGF-Rα. At P4, more of the higher than lower PDGF-Rα + fibroblasts contained Ki67 (Ki67+), and Ki67+ fibroblasts predominated in the αSMA + but not the αSMA- population. By P12, Ki67+ fibroblasts comprised a minority in both the PDGF-Rα + and αSMA+ populations. At P4, most Ki67+ fibroblasts were PDGF-Rα + and αSMA- whereas at P12, most Ki67+ fibroblasts were PDGF-Rα- and αSMA-. More of the PDGF-Rα + than - fibroblasts contained αSMA at both P4 and P12. In the lung, proximate αSMA was more abundant around nuclei in cells expressing high than low levels of PDGF-Rα at both P4 and P12. Nuclear SMAD 2/3 declined from P4 to P12 in PDGF-Rα-, but not in PDGF-Rα + cells. In Mlg fibroblasts, αSMA mRNA increased after exposure to TGFβ, but declined after treatment with PDGF-A.

Conclusion

During both septal eruption (P4) and elongation (P12), alveolar PDGF-Rα may enhance the propensity of fibroblasts to transdifferentiate rather than directly stimulate αSMA, which preferentially localizes to non-proliferating fibroblasts. In accordance, PDGF-Rα more dominantly influences fibroblast proliferation at P4 than at P12. In the lung, TGFβ may overshadow the antagonistic effects of PDGF-A/PDGF-Rα signaling, enhancing αSMA-abundance in PDGF-Rα-expressing fibroblasts.  相似文献   

12.

Background

The tyrosine kinase receptor insulin-like growth factor 1 receptor (IGF-IR) contributes to the initiation and progression of many types of malignancies. We previously showed that IGF-2, which binds IGF-IR, is an extrinsic factor that supports the ex vivo expansion of hematopoietic stem cells (HSCs). We also demonstrated that IGF-IR is not required for HSC activity in vivo.

Methods and results

Here we investigated the role of IGF-IR in chronic myeloid leukemia (CML) using the retroviral BCR/ABL transplantation mouse model. Existing antibodies against IGF-IR are not suitable for flow cytometry; therefore, we generated a fusion of the human IgG Fc fragment with mutant IGF-2 that can bind to IGF-IR. We used this fusion protein to evaluate mouse primary hematopoietic populations. Through transplantation assays with IGF-IR+ and IGF-IR cells, we demonstrated that IGF-IR is expressed on all mouse HSCs. The expression of IGF-IR is much higher on CML cells than on acute lymphoblastic leukemia (ALL) cells. The depletion of IGF-IR expression in BCR/ABL+ cells led to the development of ALL (mostly T cell ALL) but not CML. Lack of IGF-IR resulted in decreased self-renewal of the BCR/ABL+ CML cells in the serial replating assay.

Conclusion

IGF-IR regulates the cell fate determination of BCR/ABL+ leukemia cells and supports the self-renewal of CML cells.  相似文献   

13.

Introduction

Immunosuppressants, including anti-TNFα antibodies, have remarkable effects in rheumatoid arthritis; however, they increase infectious events. The present study was designed to examine the effects and immunological change of action of altered peptide ligands (APLs) on glucose-6-phosphate isomerase (GPI) peptide-induced arthritis.

Methods

DBA/1 mice were immunized with hGPI325-339, and cells of draining lymph node (DLN) were stimulated with hGPI325-339 to investigate the T-cell receptor (TCR) repertoire of antigen-specific CD4+ T cells by flow cytometry. Twenty types of APLs with one amino acid substitution at a TCR contact site of hGPI325-339 were synthesized. CD4+ T cells primed with human GPI and antigen-presenting cells were co-cultured with each APL and cytokine production was measured by ELISA to identify antagonistic APLs. Antagonistic APLs were co-immunized with hGPI325-339 to investigate whether arthritis could be antigen-specifically inhibited by APL. After co-immunization, DLN cells were stimulated with hGPI325-339 or APL to investigate Th17 and regulatory T-cell population by flow cytometry, and anti-mouse GPI antibodies were measured by ELISA.

Results

Human GPI325-339-specific Th17 cells showed predominant usage of TCRVβ8.1 8.2. Among the 20 synthesized APLs, four (APL 6; N329S, APL 7; N329T, APL 12; G332A, APL 13; G332V) significantly reduced IL-17 production by CD4+ T cells in the presence of hGPI325-339. Co-immunization with each antagonistic APL markedly prevented the development of arthritis, especially APL 13 (G332V). Although co-immunization with APL did not affect the population of Th17 and regulatory T cells, the titers of anti-mouse GPI antibodies in mice co-immunized with APL were significantly lower than in those without APL.

Conclusions

We prepared antagonistic APLs that antigen-specifically inhibited the development of experimental arthritis. Understanding the inhibitory mechanisms of APLs may pave the way for the development of novel therapies for arthritis induced by autoimmune responses to ubiquitous antigens.  相似文献   

14.

Background

γδ T cells have an important immunoregulatory and effector function through cytokine release. They are involved in the responses to Gram-negative bacterium and in protection of lung epithelium integrity. On the other hand, they have been implicated in airway inflammation.

Methods

The aim of the present work was to study intracytoplasmic IL-2, IL-4, IFN-γ and TNF-α production by γδ and αβ T lymphocytes from cystic fibrosis patients and healthy donors in response to Pseudomonas aeruginosa (PA). Flow cytometric detection was performed after peripheral blood mononuclear cells (PBMC) culture with a cytosolic extract from PA and restimulation with phorbol ester plus ionomycine. Proliferative responses, activation markers and receptor usage of γδ T cells were also evaluated.

Results

The highest production of cytokine was of TNF-α and IFN-γ, γδ being better producers than αβ. No differences were found between patients and controls. The Vγ9δ2 subset of γδ T cells was preferentially expanded. CD25 and CD45RO expression by the αβ T subset and PBMC proliferative response to PA were defective in cystic fibrosis lymphocytes.

Conclusion

Our results support the hypothesis that γδ T lymphocytes play an important role in the immune response to PA and in the chronic inflammatory lung reaction in cystic fibrosis patients. They do not confirm the involvement of a supressed Th1 cytokine response in the pathogenesis of this disease.  相似文献   

15.

Introduction

The neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have been identified in the human intervertebral disc (IVD) and have been implicated in the mechanisms associated with nerve ingrowth and nociception in degeneration of the IVD. The aim of the current study was to investigate an association between neurotrophin expression in the IVD and the severity of disc degeneration, including the effect of disc-related proinflammatory cytokines on neurotrophin and neuropeptide expression in cells derived from the human IVD.

Methods

Immunohistochemical analysis was performed to examine the expression of NGF, BDNF and their high-affinity receptors Trk-A and Trk-B in human IVD samples, divided into three categories: non-degenerate, moderate degeneration and severe degeneration. In order to study the effect of disc-related cytokines on neurotrophin/neuropeptide gene expression, nucleus pulposus cells derived from non-degenerate and degenerate IVD samples were seeded in alginate and were stimulated with either IL-1β or TNFα for 48 hours. RNA was extracted, cDNA was synthesised and quantitative real-time PCR was performed to examine the expression of NGF, BDNF and substance P.

Results

Immunohistochemistry showed expression of NGF and BDNF in the native chondrocyte-like cells in all regions of the IVD and in all grades of degeneration. Interestingly only BDNF significantly increased with the severity of degeneration (P < 0.05). Similar expression was observed for Trk-A and Trk-B, although no association with disease severity was demonstrated. In cultured human nucleus pulposus cells, stimulation with IL-1β led to significant increases in NGF and BDNF gene expression (P < 0.05). Treatment with TNFα was associated with an upregulation of substance P expression only.

Conclusion

Our findings show that both the annulus fibrosus and nucleus pulposus cells of the IVD express the neurotrophins NGF and BDNF, factors that may influence and enhance innervation and pain in the degenerate IVD. Expression of Trk-A and Trk-B by cells of the nondegenerate and degenerate IVD suggests an autocrine role for neurotrophins in regulation of disc cell biology. Furthermore, modulation of neurotrophin expression by IL-1β and modulation of substance P expression by TNFα, coupled with their increased expression in the degenerate IVD, highlights novel roles for these cytokines in regulating nerve ingrowth in the degenerate IVD and associated back pain.  相似文献   

16.

Background

Recent data have shown that γδ T cells can act as mediators for immune defense against tumors. Our previous study has demonstrated that persisting clonally expanded TRDV4 T cells might be relatively beneficial for the outcome of patients with T cell acute lymphoblastic leukemia after hematopoietic stem cell transplantation (HSCT). However, little is known about the distribution and clonality of the TRDV repertoire in T cell receptor (TCR) of γδ T cells and their effects on the clinical outcome of patients with acute myeloid leukemia (AML). The aim of this study was to assess whether the oligoclonal expansion of TCR Vδ T cells could be used as an immune biomarker for AML outcome.

Findings

γδ T cells were sorted from the peripheral blood of 30 patients with untreated AML and 12 healthy donors. The complementarity-determining region 3 (CDR3) sizes of eight TCR Vδ subfamily genes (TRDV1 to TRDV8) were analyzed in sorted γδ T cells using RT-PCR and GeneScan. The most frequently expressed TRDV subfamilies in the AML patients were TRDV8 (86.67 %) and TRDV2 (83.33 %), and the frequencies for TRDV1, TRDV3, TRDV4, and TRDV6 were significantly lower than those in healthy individuals. The most frequent clonally expanded TRDV subfamilies in the AML patients included TRDV8 (56.67 %) and TRDV4 (40 %). The clonal expansion frequencies of the TRDV2 and TRDV4 T cells were significantly higher than those in healthy individuals, whereas a significantly lower TRDV1 clonal expansion frequency was observed in those with AML. Moreover, the oligoclones of TRDV4 and TRDV8 were independent protective factors for complete remission. Furthermore, the oligoclonal expansion frequencies of TRDV5 and TRDV6 in patients with relapse were significantly higher than those in non-recurrent cases.

Conclusions

To the best of our knowledge, we characterized for the first time a significant alteration in the distribution and clonality of the TRDV subfamily members in γδ T cells sorted from AML patients. Clonally expanded TRDV4 and TRDV8 T cells might contribute to the immune response directed against AML, while oligoclonal TRDV5 and TRDV6 might occur in patients who undergo relapse. While the function of such γδ T cell clones requires further investigation, TRDV γδ T cell clones might be potential immune biomarkers for AML outcome.
  相似文献   

17.

Background

A substantial proportion of multiple sclerosis (MS) patients discontinue interferon-beta (IFNβ) treatment due to various adverse effects, most of which emerge at the early phase after initiation of the treatment and then diminish with time. At present, the molecular mechanism underlying IFNβ-related adverse effects remains largely unknown. The aim of this study is to identify a comprehensive list of early IFNβ-responsive genes (IRGs) in peripheral blood mononuclear cells (PBMC) that may play a key role in induction of adverse effects.

Methods

Total RNA of PBMC exposed to 50 ng/ml recombinant human IFNβ for 3 to 24 hours in vitro was processed for cDNA microarray analysis, followed by quantitative real-time RT-PCR analysis.

Results

Among 1,258 genes on the array, IFNβ elevated the expression of 107 and 87 genes, while it reduced the expression of 22 and 23 genes at 3 and 24 hours, respectively. Upregulated IRGs were categorized into conventional IFN-response markers, components of IFN-signaling pathways, chemokines, cytokines, growth factors, and their receptors, regulators of apoptosis, DNA damage, and cell cycle, heat shock proteins, and costimulatory and adhesion molecules. IFNβ markedly upregulated CXCR3 ligand chemokines (SCYB11, SCYB10 and SCYB9) chiefly active on effector T helper type 1 (Th1) T cells, and CCR2 ligand chemokines (SCYA8 and SCYA2) effective on monocytes, whereas it downregulated CXCR2 ligand chemokines (SCYB2, SCYB1 and IL8) primarily active on neutrophils.

Conclusion

IFNβ immediately induces a burst of gene expression of proinflammatory chemokines in vitro that have potential relevance to IFNβ-related early adverse effects in MS patients in vivo.  相似文献   

18.
Philadelphia chromosome (Ph)-positive acute lymphoblastic leukemia (ALL) is diagnosed rarely in children, but constitutes the most frequent cytogenetic abnormality in adults with ALL. In contrast to chronic myeloid leukemia (CML), patients with Ph-positive ALL usually demonstrate expression of a truncated version of the BCR-ABL protein called p190bcr-abl. Irrespective of age and breakpoint location, Ph-positive ALL carries a poor prognosis. Although remission rates are identical to those of Ph-negative ALL, relapse is almost universal and long-term survival remains rare. Given the poor outcome with current chemotherapy consolidation programs, stem cell transplantation is usually recommended for these patients in first remission or as soon as feasible. Even with transplantation the impact on outcome is limited and new therapeutic concepts are urgently needed. One of the most promising developments in recent years has been the introduction of the tyrosine kinase inhibitors such as STI571. An overview of current treatment modalities in Ph-positive ALL will be provided and the rationale for new therapies will be discussed.  相似文献   

19.

Background

Signaling studies in cell lines are hampered by non-physiological alterations obtained in vitro. Physiologic primary tumor cells from patients with leukemia require passaging through immune-compromised mice for amplification. The aim was to enable molecular work in patients' ALL cells by establishing siRNA transfection into cells amplified in mice.

Results

We established delivering siRNA into these cells without affecting cell viability. Knockdown of single or multiple genes reduced constitutive or induced protein expression accompanied by marked signaling alterations.

Conclusion

Our novel technique allows using patient-derived tumor cells instead of cell lines for signaling studies in leukemia.  相似文献   

20.

Introduction

COPD is an inflammatory disease with major co-morbidities. It has recently been suggested that depression may be the result of systemic inflammation. We aimed to explore the association between systemic inflammation and symptoms of depression and fatigue in patients with mainly moderate and clinically stable COPD using a range of inflammatory biomarkers, 2 depression and 2 fatigue scales.

Method

We assessed 120 patients with moderate COPD (FEV1% 52, men 62%, age 66). Depression was assessed using the BASDEC and CES-D scales. Fatigue was assessed using the Manchester COPD-fatigue scale (MCFS) and the Borg scale before and after 6MWT. We measured systemic TNF-α, CRP, TNF-α-R1, TNF-α-R2 and IL-6.

Results

A multivariate linear model of all biomarkers showed that TNF-α only had a positive correlation with BASDEC depression score (p = 0.007). TNF-α remained positively correlated with depression (p = 0.024) after further adjusting for TNF-α-R1, TNF-α-R2, 6MWD, FEV1%, and pack-years. Even after adding the MCFS score, body mass and body composition to the model TNF-α was still associated with the BASDEC score (p = 0.044). Furthermore, patients with higher TNF-α level (> 3 pg/ml, n = 7) had higher mean CES-D depression score than the rest of the sample (p = 0.03). Borg fatigue score at baseline were weakly correlated with TNF-α and CRP, and with TNF-α only after 6MWT. Patients with higher TNF-α had more fatigue after 6MWD (p = 0.054).

Conclusion

This study indicates a possible association between TNF-α and two frequent and major co-morbidities in COPD; i.e., depression and fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号