首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In an effort to enhance the conduction band discontinuity between channel and insulator, InxAl1-xAs/n+-In 0.53Ga0.47As heterostructure field-effect transistors (HFETs) were fabricated with InAs mole fractions in the In xAl1-xAs gate insulator of x=0.52 (lattice matching), 0.48, 0.40, and 0.30. Decreasing the InAs mole fraction in the insulator results in reduced forward- and reverse-bias gate currents, increased reverse gate breakdown voltage, and reduced real-space transfer of hot electrons from channel to gate. Down to x =0.40, these improvements trade off with a slightly reduced transconductance, but the gain in gate bias swing results in an increase in maximum current drivability. From x=0.40 to x=0.30, there is a drastic decrease in transconductance, coincident with a high density of misfit dislocations  相似文献   

2.
The authors present the fabrication and characterization of ion-implanted graded InxGa1-xAs/GaAs MESFETs. The InxGa1-xAs layers are grown on GaAs substrates by MOCVD (metal-organic chemical vapor deposition) with InAs concentration graded from 15% at the substrate to 0% at the surface. 0.5-μm gate MESFETs are fabricated on these wafers using silicon ion implantation. In addition to improved Schottky contact, the graded InxGa 1-xAs MESFET achieves maximum extrinsic transconductance of 460 mS/mm and a current-gain cutoff frequency ft of 61 GHz, which is the highest ever reported for a 0.5-μm gate MESFET. In comparison, In0.1Ga0.9As MESFETs fabricated with the same processing technique show an ft of 55 GHz  相似文献   

3.
Significant improvements in gate voltage swings in heterostructures prepared by low-pressure metalorganic chemical vapor deposition are discussed. Structures utilizing a compositionally graded InxGa1-xAs channel exhibited a very flat transconductance region of 2 V. The gate voltage swings of single and double δ-doped GaAs/In0.25Ga0.75As/GaAs structures were 2.5 and 2.8 V, respectively. All structures also exhibited high extrinsic transconductance as well as high saturation current densities  相似文献   

4.
Monolithic wide-band amplifiers have been demonstrated using AlGaAs/InxGa1-xAs/GaAs pseudomorphic two-dimensional electron-gas field-effect transistors. The amplifiers have yielded an 18.0 GHz bandwidth and a 41.8 dBΩ transimpedance gain with a feedback resistance of 100 Ω. In addition, the dependence of In mole fraction for an InxGa1-xAs channel layer on device and amplifier performance has been also investigated. The gm and the fT in a device, along with the bandwidth, the gain, and the noise performance in an amplifier, have improved as the In mole fraction is varied from 0 to 0.25  相似文献   

5.
Electroabsorption in quantum wells under biaxial tension is investigated theoretically. It is found that enhanced electroabsorption due to a field-induced merging of the light and heavy hole absorption edges can be achieved in these structures at moderate operating fields. Calculations showing this merging and electroabsorption enhancement for InxGa1-xAs-InP and GaAsxP1-x-Al0.35Ga0.65As quantum well structures are described. Trade-offs involving the advantages of merged absorption edges are identified through comparisons of tensile strained modulators utilizing the merging effect of analogous lattice matched structures. Optimal structures for operation at 1.55 μm in InxGa1-xAs-InP and 0.77 μm in GaAsxP1-x-Al0.35Ga0.65As are identified, and the sensitivities of their electroabsorption characteristics to material and structural parameters are examined  相似文献   

6.
In0.5Ga0.5P/InxGa1-xAs (x=0.33 and 0.40), pseudomorphic high electron mobility transistors (p-HEMTs) having a channel layer over the critical layer thickness were grown on patterned and nonpatterned GaAs substrates by using a compound-source molecular beam epitaxy (MBE). Characteristics of the highly strained InGaP/InxGa1-xAs (x=0.33 and 0.40) p-HEMTs grown on patterned substrates were compared with those of conventional InGaP/In0.22Ga0.78As p-HEMTs grown on a nonpatterned substrate. The highly strained InGaP/In0.33Ga 0.67As p-HEMT showed substantial improvements in device performances including DC (drain saturation current and transconductance), microwave (fT and fmax), low-frequency noise (Hooge parameter), and high-frequency noise (minimum noise figure and associated gain) characteristics compared with those of the conventional InGaP/In0.22Ga0.78As p-HEMT. The improvements in device performances of the highly strained InGaP/In0.33Ga0.67As p-HEMT are attributed to the improved transport property of the high-quality highly strained In0.33Ga0.67As channel layer achieved by the use of the patterned substrate growth. The results indicate the potential of highly strained InGaP/InxGa1-xAs p-HEMTs having a channel layer in excess of the critical layer thickness grown on patterned GaAs substrates for use in high-performance microwave device applications  相似文献   

7.
An anisotype heterojunction field-effect transistor (A-HJFET) for GaAs digital integrated circuit applications is proposed. A thin, highly doped, strained InxGa1-xAs (x⩽0.2) n-channel is employed for improved transconductance while a p+-GaAs cap is used to enhance the dynamic gate voltage range of the device. Prototype devices with 5-μm gate lengths show a maximum transconductance of 80 mS/mm at Vds=2 V and a forward gate bias voltage of up to +2 V without significant leakage current  相似文献   

8.
Electroabsorption modulation is achieved at or near a wavelength of 1.06 μm with InxAlyGa1-x-yAs/In xGa1-xAs multiple-quantum-well (MQW) structures grown on GaAs substrates. The lattice mismatch (close to 2%) between the MQW and the substrate is accommodated by a compositional-step-graded buffer array. A dislocation density of less than 107/cm2 is estimated for the MQW region. For 80-to-100 Å well widths, a maximum electroabsorption coefficient of 8000 cm-1 with an applied voltage of 15 V is obtained  相似文献   

9.
The energy balance equations coupled with drift diffusion transport equations in heterojunction semiconductor devices are solved modeling hot electron effects in single quantum well p-i-n photodiodes. The transports across the heterojunction boundary and through quantum wells are modeled by thermionic emission theory. The simulation and experimental current-voltage characteristics of a single p-i-n GaAs/Al xGa1-xAs quantum well agree over a wide range of current and voltage, The GaAs/AlxGa1-xAs p-i-n structures with multi quantum wells are simulated and the dark current voltage characteristics, short circuit current, and open circuit voltage results are compared with the available experimental data, In agreement with the experimental data, simulated results show that by adding GaAs quantum wells to the conventional cell made of wider bandgap Alx Ga1-xAs, short circuit current is improved, but there is a loss of the voltage of the host cell, In the limit of radiative recombination, the maximum power point of an Al0.35Ga0.65As/GaAs p-i-n photodiode with 30-quantum-well periods is higher than the maximum power point of similar conventional bulk p-i-n cells made out of either host Al0.35Ga0.65As or bulk GaAs material  相似文献   

10.
A theoretical investigation of low-field electron transport properties in thick layers of partially strain-relieved lattice-mismatched InxGa1-xAs on GaAs semiconductor material is performed. The results indicate that room-temperature improvements in low-field mobility with increasing indium concentration are possible, but only occur if the density of misfit dislocations can be held below a critical value  相似文献   

11.
This letter reports a new and high-performance InGaP/InxGa1-xAs high electron mobility transistor (HEMT) with an inverted delta-doped V-shaped channel. Due to the presence of V-shaped inverted delta-doped InGaP/InxGa1-x As structure, good carrier confinement and a flat and wide transconductance operation regime are expected. Experimentally, the fabricated device (1×100 μm2) shows a high gate-to-drain breakdown voltage of 30 V and a high output drain saturation current density of 826 mA/mm at VGS=2.5 V. The high transconductance expands over a very broad operation range with the maximum value of 201 mS/mm at 300 K. Meanwhile, the studied device exhibits a good microwave frequency linearity  相似文献   

12.
The mobility due to misfit dislocation scattering in n-type modulation doped Al0.3Ga0.7As/InxGa1-xAs/Al 0.3Ga0.7As quantum wells is discussed. Initially, the dislocations are modeled as an array of orthogonal charged lines. The scattering potential is introduced, including both the coulombic and piezoelectric components. The expression for the mobility limited by dislocation scattering is established, and the anisotropic characteristics of mobility and its variation with various material and device parameters are presented and discussed  相似文献   

13.
Si-delta-doped Al0.25Ga0.75As/InxGa1-xAs (x=0.15-0.28) P-HEMT's, prepared by LP-MOCVD, are investigated. The large conduction band discontinuity leads to 2-DEG density as high as 2.1×1012/cm2 with an electron mobility of 7300 cm2/V·s at 300 K. The P-HEMT's with 0.7×60 μm gate have a maximum extrinsic transconductance of 380 mS/mm, and a maximum current density of 300 mA/mm. The S-parameter measurements indicate that the current gain and power gain cutoff frequencies are 30 and 61 GHz, respectively, The RF noise characteristics exhibit a minimum noise figure of 1.2 dB with an associated gain of 10 dB at 10 GHz. Due to the efficient doping technique, the electron mobility and transconductance obtained are among the best reported for MOCVD grown P-HEMT's with the similar structure  相似文献   

14.
The effect of high temperature on the threshold current density and the gain of InxGa1-xAs/InGaAsP (Eg=1.6 eV) QW lasers lattice matched to GaAs is investigated theoretically. These results are also compared with those of Inx Ga1-xAs/GaAs QW lasers. It is found that better performance can be achieved in InGaAs/InGaAsP lasers compared to InGaAs/GaAs lasers at high temperature. This is due to the fact that the temperature dependence of the threshold carrier density for InGaAs/InGaAsP lasers is weaker than that for InGaAs/GaAs lasers. The calculated characteristic temperature is in good agreement with reported experimental results  相似文献   

15.
Low-temperature microwave measurements of both lattice-matched and pseudomorphic InxGa1-xAs/In0.48As (x=0.53, 0.60, and 0.70) channel MODFETs on InP substrates were carried out in a cryogenic measurement system. The measurements were done in the temperature range of 77 to 300 K and in the frequency range of 0.5 to 11.0 GHz at different bias conditions. The cutoff frequency ( fT) for the InxGa1-xAs/In0.52Al0.48As MODFETs improved from 22 to 29 GHz, 29 to 38 GHz, and 39 to 51 GHz, for x=0.53, 0.60, and 0.70, respectively, as the temperature was lowered from 300 to 77 K, which is approximately a 31% increase at each composition. No degradations were observed in device performance. These results indicate an excellent potential of the pseudomorphic devices at low temperatures  相似文献   

16.
The authors report the 60-GHz noise performance of low-noise ion-implanted InxGa1-xAs MESFETs with 0.25 μm T-shaped gates and amplifiers using these devices. The device noise figure was 2.8 dB with an associated gain of 5.6 dB at 60 GHz. A hybrid two-state amplifier using these ion-implanted InxGa1-x As MESFETs achieved a noise figure of 4.6 dB with an associated gain of 10.1 dB at 60 GHz. When this amplifier was biased at 100% I dss, it achieved 11.5-dB gain at 60 GHz. These results, achieved using low-cost ion-implantation techniques, are the best reported noise figures for ion-implanted MESFETs  相似文献   

17.
A combination of high mobility and high sheet carrier density in AlxGa1-xAs/GaAs two-dimensional electron gas (2DEG) elements was obtained by low-pressure organometallic vapor phase epitaxy (OMVPE). The sheet charge densities (ns) and mobilities (μ) at 77 K are 1.2×1012/cm2 and 90000 cm2/V-s for single-channel, and 2.0× 1012/cm2 and 64500 cm2/V-s for double-channel elements, respectively. Strong correlations between the photoluminescence spectrum of the AlxGa1-xAs layers and the 2DEG mobility were found. The 2DEG elements were used as mixers and detectors at millimeter wavelengths. Mixing at 94 GHz with a 1.7-GHz IF bandwidth and detection of signals as high as 238 GHz under a magnetic field were achieved with these devices  相似文献   

18.
In0.08Ga0.92As MESFETs were grown in GaAs (100) substrates by molecular beam epitaxy (MBE). The structure comprised an undoped compositionally graded InxGa1-x As buffer layer, an In0.08Ga0.92As active layer, and an n+-In0.08Ga0.92As cap layer. FETs with 50-μm width and 0.4-μm gate length were fabricated using the standard processing technique. The best device showed a maximum current density of 700 mA/mm and a transconductance of 400 mS/mm. The transconductance is extremely high for the doping level used and is comparable to that of a 0.25-μm gate GaAs MESFET with an active layer doped to 1018 cm-3. The current-gain cutoff frequency was 36 GHz and the power-gain cutoff frequency was 65 GHz. The current gain cutoff frequency is comparable to that of a 0.25-μm gate GaAs MESFET  相似文献   

19.
The authors have experimentally determined Auger recombination rates in compressively strained InxGa1-xAs/InGaAsP/InP MQW lasers for the first time. The Auger recombination rates were derived from the measured turn-on delay times during large-signal modulation of single-mode lasers. The Auger coefficient increases from 5±1×10-30 to 13±1×10-30 cm6 s-1 as the indium composition in the quantum well active region, x, increases from 0.53 to 0.73  相似文献   

20.
An InxAlyGa1-x-y device layer structure that enables the monolithic integration of In0.25Al 0.75As/In0.15Ga0.85As MODFETs and In 0.25Al0.35Ga0.40As/In0.25Ga 0.75As MQW modulators is reported. Current gain cutoff frequencies of 10 GHz are measured for 1 μm gate length MODFETs. MQW modulators operating at 1.05 μm demonstrate 20% transmission modulation for an applied 8 V  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号