首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid and selective assay of nicotine, cotinine and rans-3'-hydroxycotinine in human serum, based on high-performance liquid chromatography with UV detection has been developed. The compounds were subjected to solid-phase extraction, using Extrelut 1 cartridges. Recoveries were ca. 95% for nicotine, 90% for cotinine and 50–55% for trans-3'-hydroxycotinine. The limit of quantitation observed with this method was 10 ng/ml for nicotine and 5 ng/ml for each of the metabolites. The compounds were also identified using high-performance liquid chromatography with particle beam mass spectrometry, to confirm their presence in human serum.  相似文献   

2.
A method is proposed for the determination of nicotine and cotinine in human urine, plasma and saliva. Nicotine and cotinine were extracted from alkalinized sample with ethyl ether and concentrated to minimum volume with nitrogen stream. The volatility of nicotine was prevented by the addition of acetic acid to the organic solvent during evaporation. Peak shapes and quantitation of nicotine and cotinine are excellent, with linear calibration curves over a wide range of 1-10,000 ng/ml. The detection limits of nicotine and cotinine are 0.2 ng/ml in urine and 1.0 ng/ml in plasma and saliva. The intra-day precision of nicotine and cotinine in all samples was <5% relative standard deviation (RSD). Urine, plasma and saliva samples of 303 non-smoking and 41 smoking volunteers from a girl's high school in Korea were quantified by the described procedure. As a result, the concentrations of nicotine and cotinine in plasma ranged from 6 to 498 ng/ml and 4 to 96 ng/ml. Otherwise, those of nicotine and cotinine in saliva ranged from 0 to 207 ng/ml and 0 to 42 ng/ml, and those of nicotine and cotinine in urine ranged from 0 to 1,590 ng/ml and 0 to 2,986 ng/ml, respectively. We found that the concentration of cotinine in plasma was successfully predicted from the salivary cotinine concentration by the equation y=2.31x+4.76 (x=the concentration of cotinine in saliva, y=the concentration of cotinine in plasma). The results show that through the accurate determination of cotinine in saliva, the risk of ETS-exposed human can be predicted.  相似文献   

3.
A rapid and sensitive capillary gas-chromatographic method with nitrogen-sensitive detection is reported for the simultaneous analysis of nicotine and cotinine levels occurring in the plasma, saliva, and urine of regular tobacco smokers. The proposed assay has a linear output, has satisfactory accuracy over the range of concentrations of both amines encountered in active smokers, and has also been successful in the analysis of the urine samples of passive smokers. Its lower limit of sensitivity is 0.2 ng of nicotine and 0.5 ng of cotinine per ml of plasma or saliva or per 100 l of urine.The beneficial characteristics of the presented method were achieved by the combination of solid phase extraction of 0.1–1.0 ml of fluid specimens, capillary column gas chromatography with splitless injection and nitrogen sensitive detection, and the use of separate, structurally analogous compounds as internal standards for nicotine. The suitability of the assay is shown by plasma concentration-time curves of nicotine and cotinine in a steady smoker during a 24 hours period.  相似文献   

4.
A rapid and sensitive method is described for the simultaneous determination of nicotine and its principal metabolite, cotinine, in plasma. A one-step extraction procedure is employed and the quantitative analyses are performed by capillary column gas chromatography using a thermionic specific detector. Other special measures to avoid contamination from external sources such as atmosphere, solvents and laboratory equipment, which constitutes the major limiting factor of nicotine assay, were also undertaken. The structural analogues of nicotine and cotinine, N-methylanabasine and N-ethylnorcotinine, are used as internal standards. Moreover, a micromethod, which requires only 0.1 ml of plasma and found to be suitable for analysis of cotinine in finger-tip samples of blood, is described. Linearity over the concentration ranges 5–100 ng of nicotine per ml of plasma and 5–500 ng of cotinine per ml of plasma is demonstrated. The precision of the method has been investigated by determining the reproducibility at different levels of nicotine and cotinine within the working ranges, for both 1-ml and 0.1-ml samples of plasma.  相似文献   

5.
The validation of a high-performance liquid chromatographic method for the simultaneous determination of low level cotinine and 3-hydroxycotinine in human saliva is reported. Analytes and deuterated internal standards were extracted from saliva samples using automated solid-phase extraction, the columns containing a hyper cross-linked styrene–divinylbenzene copolymer sorbent, and analysed by reversed-phase liquid chromatography with tandem mass spectrometric detection (LC–MS–MS). Lower limits of quantitation of 0.05 and 0.10 ng/ml for cotinine and 3-hydroxycotinine, respectively, were achieved. Intra- and inter-batch precision and accuracy values fell within ±17% for all quality control samples, with the exception of quality control samples prepared at 0.30 ng/ml for 3-hydroxycotinine (inter-day precision 21.1%). Results from the analysis of saliva samples using this assay were consistent with subjects’ self-reported environmental tobacco smoke (ETS) exposures, enhancing the applicability of cotinine as a biomarker for the assessment of low level ETS exposure.  相似文献   

6.
A solid-phase extraction method using Drug Test-1 column containing chemically modified silica as a solid support for sample clean up and reversed phase ion-paired high-pressure liquid chromatography method have been developed for the simultaneous determination of nicotine and its metabolite cotinine from the urine samples. Mobile phase was consisted of acetate buffer (containing 0.03 M sodium acetate and 0.1 M acetic acid) pH 3.1 and acetonitrile (78:22% (v/v)) containing 0.02 M sodium octanosulfonate as an ion pair agent. pH of the mobile phase was adjusted to 3.6 with triethylamine for better resolution and to prevent peak tailing. The linearity was obtained in the range of 0.5-10 microg/ml concentrations of nicotine and cotinine standards. The correlation coefficients were 0.998 for cotinine and 0.999 for nicotine. The recoveries were obtained in the range of 79-97% with average value of 85% for nicotine and in the range of 82-98% with average value of 88% for cotinine. The limit of detection was 2 ng/ml for cotinine and 5 ng/ml for nicotine with 2 ml urine for extraction, calculated by taking signal to noise ratio 10:3. The intra-day co-efficient of variation (CV) were <4 and 7% and inter-day CV were <9 and 7% for nicotine and cotinine, respectively. The method was applied to the urine samples of tobacco harvesters, who suffer from green tobacco sickness (GTS) to check the absorption of nicotine through dermal route during the various processes of tobacco cultivation due to its good reproducibility and sensitivity.  相似文献   

7.
A high-performance liquid chromatographic method for the quantitation of finasteride in human plasma is presented. The method is based on liquid–liquid extraction with hexane–isoamylalcohol (98:2, v/v) and reversed-phase chromatography with spectrophotometric detection at 210 nm. The mobile phase consists of acetonitrile–15 mM potassium dihydrogenphosphate (40:60, v/v). Clobazam is used as the internal standard. The limit of quantitation is 4 ng/ml and the calibration curve is linear up to 300 ng/ml. Within-day and between-day precision expressed by relative standard deviation is less than 5% and inaccuracy does not exceed 8%. The assay was used for pharmacokinetic studies.  相似文献   

8.
ExtrelutR extraction and glass capillary gas chromatography were applied to the routine determination of nicotine and its metabolites cotinine, nicotine-1′-N-oxide and cotinine-1-N-oxide in urine and plasma. After extraction of nicotine and cotinine both N-oxides and phendimetrazine-N-oxide (used as internal standard) were reduced to their bases by SO2 on-column and eluted by a mixture of diethyl ether and dichloromethane. The minimum detectable concentrations are 0.03 μg/ml for urinary nicotine and cotinine and 0.1 μg/ml for the N-oxides. In plasma samples the corresponding values are 5 ng/ml and 15 ng/ml, respectively, with sample values as small as 2 ml. The advantage of the direct determination of all four compounds of interest in one sample reduced the amount of plasma required. The straightforward and rapid extraction and reduction procedure as well as the long-term stability of the gas chromatographic separation system make the method suitable for routine application.  相似文献   

9.
A HPLC method has been developed for the analogue of Ecstasy MDE and its major metabolites N-ethyl-4-hydroxy-3-methoxyamphetamine (HME) and 3,4-methylenedioxyamphetamine (MDA) in human plasma. In the course of our investigations we found that the methylenedioxyamphetamines and HME exhibit fluorescence at 322 nm. Therefore the detection could be carried out with a fluorescence (FL) detector. Solid-phase extraction was used for sample preparation and yielded high recovery rates greater than 95%. The limit of quantitation for MDE and its metabolites in the extracts was between 1.5 and 8.9 ng/ml and the method standard deviations were less than 5%. This sensitive, rapid and reliable analytical method has been used successfully in the quantitation of the substances in plasma samples obtained from 14 volunteers in two clinical studies after p.o. administration of 100 to 140 mg MDE*HCl. The maximum plasma concentrations were 235–465 ng/ml (MDE), 67–673 ng/ml (HME) and 7–33 ng/ml (MDA), respectively. Pharmacokinetic parameters have been investigated using the plasma concentration curves.  相似文献   

10.
Here we report a sensitive liquid chromatographic-tandem mass spectrometric (LC-MS-MS) method capable of quantifying nicotine down to 1 ng/ml and cotinine to 10 ng/ml from 1.0 ml of human plasma. The method was validated over linear ranges of 1.0–50.0 ng/ml for nicotine and 10.0–500.0 ng/ml for cotinine, using deuterated internal standards. Compounds were simply extracted from alkalinized human heparinized plasma with methylene chloride, reconstituted into a solution of acetonitrile, methanol and 10 mM ammonium acetate (53:32:15, v/v) after the organic phase was dried down, and analyzed on the LC-MS-MS, which is a PE Sciex API III system equipped with a Keystone BDS Hypersil C18 column and atmospheric pressure chemical ionization (APCI) interface. The between-run precision and accuracy of the calibration standards were ≤6.42% relative standard deviation (R.S.D.) and ≤11.8%n relative error (R.E.) for both nicotine and cotinine. The between-run and within-run precision and accuracy of quality controls. (2.5, 15.0, 37.5 ng/ml for nicotine and 25.0, 150.0, 375.0 ng/ml for cotinine), were ≤6.34% R.S.D. and ≤7.62% R.E. for both analytes. Sample stabilities in chromatography, in processing and in biological matrix were also investigated. This method has been applied to pharmacokinetic analysis of nicotine and cotinine in human plasma.  相似文献   

11.
The aim of this study was to develop a simple, rapid and sensitive assay of nicotine in plasma for automated gas chromatographic–mass spectrometric analysis. Biological samples were extracted using pre-packed Extrelut-1 columns with 5 ml of ethyl acetate. Quantitative analysis was done using deuterium-labelled nicotine as internal standard. The limit of quantitation was 0.5 ng in 1-ml plasma samples. Precision was ranging from 13.3% to 1.64% (R.S.D.) depending on the concentration, while the deviation was 4.16%. This method has been used for determination of nicotine bioavailability from new, low-dosage, nicotine chewing gum strips.  相似文献   

12.
An analytical procedure to screen butorphanol in horse race urine using ELISA kits and its confirmation by GC–MS is described. Urine samples (5 ml) were subjected to enzymatic hydrolysis and extracted by solid-phase extraction. The residues were then evaporated, derivatized and injected into the GC–MS system. The ELISA test (20 μl of sample) was able to detect butorphanol up to 104 h after the intramuscular administration of 8 mg of Torbugesic, and the GC–MS method detected the drug up to 24 h in FULL SCAN or 31 h in the SIM mode. Validation of the GC–MS method in the SIM mode using nalbuphine as internal standard included linearity studies (10–250 ng/ml), recovery (±100%), intra-assay (4.1–14.9%) and inter-assay (9.3–45.1%) precision, stability (10 days), limit of detection (10 ng/ml) and limit of quantitation (20 ng/ml).  相似文献   

13.
The combination of capillary electrophoresis (CE) and mass spectrometry (MS) with solid-phase extraction (SPE) has been used for the identification of nicotine and eight of its metabolites in urine. The recovery of cotinine from cotinine-spiked urine, by C18 SPE, was found to be 98%. Smokers urine (200 ml) was preconcentrated 200-fold via SPE prior to analysis. The sample stacking mode of CE, when compared to capillary zone electrophoresis, was shown to improve peak efficiency by 132-fold. The combination of hydrodynamic and electrokinetic injection was studied with sample stacking/CE/MS. The on-column limits of detection (LOD) of nicotine and cotinine, by this technique, were found to be 0.11 and 2.25 microg/ml, respectively. Hence, LODs of nicotine and cotinine in urine after 200-fold preconcentration were 0.55 and 11.25 ng/ml, respectively.  相似文献   

14.
A high-performance liquid chromatographic (HPLC) assay for the determination of nicotine and cotinine in human milk was developed using an extraction by liquid-liquid partition combined with back extraction into acid, and followed by reverse-phase chromatography with UV detection of analytes. The assay was linear up to 500 microg/l for both nicotine and cotinine. Intra- and inter-day relative standard deviations (R.S.D.) were <10% (25-500 microg/l) for both nicotine and cotinine. Limits of quantitation (LOQ) were 10 and 12 microg/l for nicotine and cotinine, respectively, while the limits of detection (LOD) were 8 and 10 microg/l for nicotine and cotinine, respectively. The mean recoveries were 79-93% (range 25-500 microg/l) for nicotine and 78-89% (range 25-500 microg/l) for cotinine. The amount of fat in the milk did not affect the recovery. We found that this method was sensitive and reliable in measuring nicotine and cotinine concentrations in milk from a nursing mother who participated in a trial of the nicotine patch for smoking cessation.  相似文献   

15.
The novel compound methyl-1-(3,4-dimethoxyphenyl)-3-(3-ethylvaleryl)-4-hydroxy-6,7,8-trimethoxy-2-naphthoate (S-8921) has hypocholesterolemic activity in animals and is expected to exhibit a similar activity in human. Reversed-phase high-performance liquid chromatography (HPLC) separation followed by radioimmunoassay (RIA) for human plasma samples (HPLC–RIA) and immunoaffinity extraction (IAE) followed by RIA for human urine samples (IAE–RIA) were developed for investigation of S-8921 behavior in clinical studies. For the RIA, antisera from rabbit and a radioiodine-labelled S-8921 were prepared by immunizing a conjugate of S-8921 with bovine serum albumin and by the Bolton and Hunter method, respectively. HPLC–RIA using a semi-micro column was very sensitive, that is a 0.05 ng/ml limit of quantitation in human plasma, and specific for unchanged form of S-8921. IAE–RIA using a centrifugal filtration tube completely eliminated the matrix effect of human urine, and was very feasible. The limit of quantitation was 0.10 ng/ml. RIA detection following HPLC or IAE proved to be very useful for the pharmaceutical analysis of extremely low drug concentrations in body fluids.  相似文献   

16.
A sensitive and specific high-performance liquid chromatographic (HPLC) method with UV detection was developed for the determination of minocycline in human plasma and parotid saliva samples. Samples were extracted using an Oasis™ HLB cartridge and were injected into a C8 Nucleosil column. The HPLC eluent contained acetonitrile–methanol–distilled water–0.1% trifluoroacetic acid (25:2:72.9:0.1, v/v). Demeclocycline was used as internal standard. The assay showed linearity in the tested range of 0.1–25 μg/ml. The limit of quantitation was 100 ng/ml. Recovery from plasma or parotid saliva averaged 95%. Precision expressed as %CV was in the range 0.2–17% (limit of quantitation). Accuracy ranged from 93 to 111%. In the two matrices studied at 20 and 4°C, rapid degradation of the drug occurred. Frozen at −30°C, this drug was stable for at least 2 months, the percent recovery averaged 90%. The method’s ability to quantify minocycline with precision, accuracy and sensitivity makes it useful in pharmacokinetic studies.  相似文献   

17.
Three high-performance liquid chromatographic methods are described for the detection of the novel antifolate anticancer drug (6R)-5,10-dideaza-5,6,7,8-tetrahydrofolate (lometrexol): one with fluorometric detection and two with detection by UV absorbance. An assay for plasma lometrexol using UV detection (288 nm) and reversed-phase chromatography was developed, with a quantitation limit of 0.2 μg/ml and linearity up to 10 μg/ml. This assay was modified for measurement of lometrexol in urine, with a quantitation limit of 2 μg/ml and linearity up to 25 μg/ml. An alternative assay for plasma lometrexol using derivatization and fluorescence detection (excitation at 325 nm, emission at 450 nm) was also developed, which proved twenty-fold more sensitive (quantitation limit of 10 ng/ml) than the UV assay, and which was linear up to 250 ng/ml. The fluoremetric method requires sample oxidation with manganese dioxide prior to analysis, and uses ion-pair chromatography with tetramethylammonium hydrogensulphate as an ion-pair reagent. All assays use a similar preliminary solid-phase extraction method (recovery as assessed by UV absorption >73%), with C10-desmethylene lometrexol added for internal standardisation. Each assay is highly reproducible (inter-assay precision in each assay is <10%). Applicability of the fluorescence-based assay to lometrexol in plasma and the UV-based assay lometrexol in urine is demonstrated by pharmacokinetic studies in patients treated as part of a Phase I clinical evaluation of the drug.  相似文献   

18.
A sensitive and stereospecific HPLC method was developed for the analysis of (−)- and (+)-pentazocine in human serum. The assay involves the use of a phenyl solid-phase extraction column for serum sample clean-up prior to HPLC analysis. Chromatographic resolution of the pentazocine enantiomers was performed on a octadecylsilane column with sulfated-β-cyclodextrin (S-β-CD) as the chiral mobile phase additive. The composition of the mobile phase was aqueous 10 mM potassium dihydrogenphosphate buffer pH 5.8 (adjusted with phosphoric acid)–absolute ethanol (80:20, v/v) containing 10 mM S-β-CD at a flow-rate of 0.7 ml/min. Recoveries of (−)- and (+)-pentazocine were in the range of 91–93%. Linear calibration curves were obtained in the 20–400 ng/ml range for each enantiomer in serum. The detection limit based on S/N=3 was 15 ng/ml for each pentazocine enantiomer in serum with UV detection at 220 nm. The limit of quantitation for each enantiomer was 20 ng/ml. Precision calculated as R.S.D. and accuracy calculated as error were in the range 0.9–7.0% and 1.2–6.2%, respectively, for the (−)-enantiomer and 0.8– 7.6% and 1.2–4.6%, respectively, for the (+)-enantiomer (n=3).  相似文献   

19.
A GC–MS method, using deuterium-labelled 19-noretiocholanolone as internal standard and following an extensive LC purification prior to selected ion monitoring of the bis(trimethylsilyl) ethers at ion masses m/z 405, 419, 420 and 421, allowed the quantitation of subnanogram amounts of 19-norandrosterone present in 10-ml urine samples at m/z 405. Thirty healthy men, free of anabolic androgen supply, delivered 24-h urine collections in 4 timed fractions. Accuracy was proven by the equation, relating added (0.05–1 ng/ml) to measured analyte, which had a slope not significantly different from 1. Precision (RSD) was 4% at a concentration of 0.4 ng/ml, and 14% at 0.04 ng/ml. Analytical recovery was 82%. The limit of quantitation was 0.02 ng/ml. The excretion ranges were 0.03–0.25 μg/24 h or 0.01–0.32 ng/ml in nonfractionated 24-h urine.Taking into account inter-individual variability and log-normal distribution, a threshold of 19-norandrosterone endogenous concentration of 2 ng/ml, calculated as the geometric mean plus 4 SD, was established. This value corresponds to the decision limit advised by sport authorities for declaring positive (anabolic) doping with nandrolone.  相似文献   

20.
A sensitive LC–MS quantitation method of cetrorelix, a novel gonadotropin releasing hormone (GnRH) antagonist, was developed. Plasma and urine samples to which brominated cetrorelix was added as an internal standard (I.S.) were purified by solid-phase extraction with C8 cartridges. The chromatographic separation was achieved on a C18 reversed-phase column using acetonitrile–water–trifluoroacetic acid (35:65:0.1, v/v/v) as mobile phase. The mass spectrometric analysis was performed by electrospray ionization mode with negative ion detection, and the adduct ions of cetrorelix and I.S. with trifluoroacetic acid were monitored in extremely high mass region of m/z 1543 and 1700, respectively. The lower limit of quantitation was 1.00 ng per 1 ml of plasma and 2.09 ng per 2 ml of urine, and the present method was applied to the analysis of pharmacokinetics of cetrorelix in human during phase 1 clinical trial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号