首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optimal diet model entails that foragers look beyond the individual prey encounter, to at least the level of intake rate across a bout of foraging, but optimization over a longer time remains controversial. In this paper, we show how oystercatchers increase their intake over the longer term using mussel colour as a cue. Wintering oystercatchers Haematopus ostralegus feed extensively on mussels Mytilus edulis in the estuaries of southern Britain. They show a marked preference for brown-shelled mussels over the commoner black-shelled morph, and we show that this enables them to maximize their rate of energy gain over a longer period than a single foraging bout. The brown and black mussels did not differ in ventral thickness and energy content, which are the main criteria for mussel selection and most important for short-term optimization. The brown mussels contained significantly less moisture, so by selecting them, oystercatchers could pack more mussel flesh into their limited oesophageal storage capacity. This enables them to increase their overall consumption during a feeding bout and increases their long-run energy gain rate, to an extent that is large enough to be significant for survival, especially during the short exposure of the mussel beds in winter.  相似文献   

2.
Intake rate maximization alone is not always sufficient in explainingprey size selection in predators. For example, bivalve-feedingoystercatchers regularly select smaller prey than expected ifthey aimed to maximize their intake rate. It has been proposedthat to these birds large prey are "risky," in the sense thatbirds may damage their bills when feeding on large bivalves.Large bivalves yield more energy, but according to this hypothesisthis is achieved at the expense of energy yield in the longterm when (1) the risk of bill damage increases with prey sizeand (2) foraging with a damaged bill is less effective. In accordancewith this hypothesis, we show that captive oystercatchers feedingon large cockles experienced a high probability of bill tipdamage, while bill damage was absent when cockles were small.Moreover, among free-living oystercatchers the prevalence ofbill damage was correlated with mean cockle size near the capturesite, and the data on captive birds fit in this pattern. Foodintake of captive oystercatchers feeding exclusively on cockleswas reduced by 23% after bill damage, and free-living birdswith damaged bills had 14 g lower mass. Because lower body masswas associated with higher mortality probability, these resultsindicate long-term costs associated with feeding on large cockles.We conclude that the risk of bill damage can potentially explainwhy oystercatchers avoid large bivalves and that oystercatchersmay maximize long-term intake rate by selecting prey sizes thatare "suboptimal" from a short-term rate-maximizing point ofview.  相似文献   

3.
Migratory shorebirds need to replenish their energy reserves by foraging at stop-over sites en route. Adjusting their foraging behaviour to accommodate variation in local prey availability would therefore be advantageous. We test whether western sandpipers (Calidris mauri), a sexually dimorphic shorebird, adjust their foraging behaviour in response to local changes in prey availability, as inferred by changes in diurnal time and sediment temperature. Both males and females showed quantitative changes to foraging mode in relation to each of these variables. Probing, for example, which is used to exploit infaunal prey, was significantly more common at higher temperatures. The results presented here are consistent with the notion that western sandpipers can adjust their foraging behaviour in response to variation in prey availability. Further, we speculate that temperature-induced changes to prey location may contribute to the striking sexual segregation observed for this species during the non-breeding season.  相似文献   

4.
We compared prefledging growth, energy expenditure, and time budgets in the arctic-breeding red knot (Calidris canutus) to those in temperate shorebirds, to investigate how arctic chicks achieve a high growth rate despite energetic difficulties associated with precocial development in a cold climate. Growth rate of knot chicks was very high compared to other, mainly temperate, shorebirds of their size, but strongly correlated with weather-induced and seasonal variation in availability of invertebrate prey. Red knot chicks sought less parental brooding and foraged more at the same mass and temperature than chicks of three temperate shorebird species studied in The Netherlands. Fast growth and high muscular activity in the cold tundra environment led to high energy expenditure, as measured using doubly labelled water: total metabolised energy over the 18-day prefledging period was 89% above an allometric prediction, and among the highest values reported for birds. A comparative simulation model based on our observations and data for temperate shorebird chicks showed that several factors combine to enable red knots to meet these high energy requirements: (1) the greater cold-hardiness of red knot chicks increases time available for foraging; (2) their fast growth further shortens the period in which chicks depend on brooding; and (3) the 24-h daylight increases potential foraging time, though knots apparently did not make full use of this. These mechanisms buffer the loss of foraging time due to increased need for brooding at arctic temperatures, but not enough to satisfy the high energy requirements without invoking (4) a higher foraging intake rate as an explanation. Since surface-active arthropods were not more abundant in our arctic study site than in a temperate grassland, this may be due to easier detection or capture of prey in the tundra. The model also suggested that the cold-hardiness of red knot chicks is critical in allowing them sufficient feeding time during the first week of life. Chicks hatched just after the peak of prey abundance in mid-July, but their food requirements were maximal at older ages, when arthropods were already declining. Snow cover early in the season prevented a better temporal match between chick energy requirements and food availability, and this may enforce selection for rapid growth.  相似文献   

5.
By comparing the shells of those mussels Mytilus edulis that had been opened by oystercatchers Haematopus ostralegus with mussels of similar size that had not been opened, it was shown that oystercatchers that break into their prey by hammering a hole in the shell selected between prey within a size-class. Ventral hammerers selected mussels that were relatively thin on the ventral surface, were brown in colour and carried few barnacles. Dorsal hammerers selected eroded mussels with thin dorsal shells. Stabbing oystercatchers did not select for thin-shelled prey. In conjunction with the great individual variation in flesh content between mussels of the same length, prey size in this case can be only a poor predictor of prey profitability.  相似文献   

6.
Guy Beauchamp 《Oecologia》2009,161(3):651-655
Despite its fundamental relevance to many ecological processes in predator–prey relationships, the functional response, which relates predator intake rate to prey density, remains difficult to document in the field. Here, I document the functional response of semipalmated sandpipers (Calidris pusilla) foraging on a burrowing amphipod Corophium volutator during three field seasons at the peak of fall migration in the upper Bay of Fundy (New Brunswick, Canada). I gathered data during the ebbing tide when all sandpipers are highly motivated to feed after a lengthy hide-tide fast. As birds follow the receding tideline, foragers encounter prey at different densities and do not aggregate in the richest food patches. Results show that intake rate increased at a decreasing rate with Corophium density, yielding a type II functional response typical of many shorebird species. Intake rate decreased in the later stages of migration stopover at a time where preferred prey items have been shown to occur at lower densities due to prior depletion. At this period of lower prey availability, intake rate also decreased with sandpiper density providing evidence for interference at low prey density. The results illustrate the fact that the functional response may not be unique but instead vary as a function of the type of competitive relationship among foragers.  相似文献   

7.
Dense flocks of migratory shorebirds from diverse species often concentrate in the intertidal areas for stopover. Trophic structure, food partition, prey availability and selectivity, predation risk, and abiotic factors are often used to explain the differences in habitat use of coexisting shorebirds. We sampled the macrobenthos and surveyed the distribution of shorebird populations to study the effects of foraging strategies on the habitat use of shorebirds at Chongming Dongtan, an important stopover site for shorebirds on the East Asian–Australasian Flyway. Results show that the relative abundance of epifaunal macrobenthos in salt marshes was much higher than that in the bare flats, whereas the relative abundance of infaunal macrobenthos in salt marshes was much lower than that in bare flats. The relative abundance of two life forms of macrobenthos was similar in the transitional zones between the salt marshes and the bare flats. Shorebirds with different foraging strategies exhibited different habitat uses. Pause-travel shorebirds mainly utilized the salt-marsh fringes, while tactile continuous shorebirds relied heavily on the bare flats. There was no significant difference in habitat use for visual continuous shorebirds. The density of tactile continuous shorebirds was positively correlated with bivalve density, and that of visual continuous shorebirds positively with crustacean density. Meanwhile, the relative abundance of pause-travel foraging shorebirds was positively correlated with the relative abundance of epifaunal, but negatively with infaunal macrobenthos. In contrast, the relative abundance of tactile foraging shorebirds had a positive correlation with infaunal but a negative one with epifaunal life form. Therefore, foraging strategies may play important roles in shorebirds’ habitat use in intertidal areas.  相似文献   

8.
Worldwide declines in shorebird populations, driven largely by habitat loss and degradation, motivate environmental managers to preserve and restore the critical coastal habitats on which these birds depend. Effective habitat management requires an understanding of the factors that determine habitat use and value to shorebirds, extending from individuals to the entire community. While investigating the factors that influenced shorebird foraging distributions among neighboring intertidal sand flats, we built upon species-level understandings of individual-based, small-scale foraging decisions to develop more comprehensive guild- and community-level insights. We found that densities and community composition of foraging shorebirds varied substantially among elevations within some tidal flats and among five flats despite their proximity (all located within a 400-m stretch of natural, unmodified inlet shoreline). Non-dimensional multivariate analyses revealed that the changing composition of the shorebird community among flats and tidal elevations correlated significantly (ρs = 0.56) with the spatial structure of the benthic invertebrate prey community. Sediment grain-sizes affected shorebird community spatial patterns indirectly by influencing benthic macroinvertebrate community compositions. Furthermore, combining sediment and macroinvertebrate information produced a 27% increase in correlation (ρs = 0.71) with shorebird assemblage patterns over the correlation of the bird community with the macroinvertebrate community alone. Beyond its indirect effects acting through prey distributions, granulometry of the flats influenced shorebird foraging directly by modifying prey availability. Our study highlights the importance of habitat heterogeneity, showing that no single patch type was ideal for the entire shorebird community. Generally, shorebird density and diversity were greatest at lower elevations on flats when they became exposed; these areas are at risk from human intervention by inlet sand mining, construction of groins and jetties that divert sediments from flats, and installation of seawalls on inlet shorelines that induce erosion of flats.  相似文献   

9.
Predation by herring gullsLarus argentatus and oystercatchersHaematopus ostralegus was evaluated on a newly established musselMytilus edulis bed on tidal flats of the German Wadden Sea. The mussel bed covered an area of 2 ha and showed a decrease in biomass of 40% in the most densely covered parts from August to January. Synchronously, the extent of the mussel bed was reduced, resulting in a decrease of average biomass of 98% over the whole mussel bed. From the beginning of August 1994 to mid January 1995, the average size of mussels increased from 10.7 to 20.3 mm. The P/B-ratio was 0.68 in August and 0.18 between September and November. Herring gulls and oystercatchers were the most important mussel predators. On average, 266 herring gulls and 63 oystercatchers were present on the mussel bed during one low tide; 34% of the herring gulls and 78% of the oystercatchers were observed to be feeding. Herring gulls fed at a rate of 4.2 mussels per minute and oystercatchers at a rate of 1.3 mussels per minute. While herring gulls took the most common mussel sizes (mean: 20 mm), oystercatchers searched for the largest mussels available (mean: 25 mm). Herring gulls consumed 13 mussels/m2 (0.3g AFDW) during one day and oystercatchers 1.7 mussels/m2 (0.1 g AFDW). Predation by birds was compensated by 33% of the production. The proportion removed by bird predation amounted to 10% of abundance and to 16% of biomass (including production). Oystercatchers were responsible for 1% of the reduction in abundance and for 3% of biomass. Removal was highest in the most common size classes of mussels, mainly caused by herring gulls. However, the highest proportion of mussels was eaten in the largest size classes, mainly by oystercatchers. *** DIRECT SUPPORT *** A03B6035 00004  相似文献   

10.
We used stable isotope (SI) methods in combination with pen feeding trials to determine the importance of eggs of the Atlantic horseshoe crab Limulus polyphemus to migratory fattening of red knots Calidris canutus rufa and ruddy turnstones Arenaria interpres morinella during spring stopover in Delaware Bay. By manifesting measurable fractionation (ca +3‰) and rapid turnover, blood plasma δ15 nitrogen proved a functional marker for SI diet tracking during the short 3-week stopover. Blood samples from free-ranging knots (3 data sets) and turnstones (1 data set) produced similar convergence of plasma δ15N signatures with increasing body mass that indicated highly similar diets. Asymptotes deviated slightly (0.3‰ to 0.7‰) from that of captive shorebirds fed a diet of only crab eggs during stopover, thus confirming a strong crab egg-shorebird linkage. The plasma δ15N crab-egg diet asymptote was enriched ca +4.5‰ and therefore readily discriminated from that of either blue mussels Mytilus edulis or coquina clams Donax variabilis , the most likely alternative prey of knots in Delaware Bay. Crab eggs were highly palatable to captive knots and turnstones which achieved rates of mass gain (3–11 g/d) comparable to that of free-ranging birds. Peak consumption rates during hyperphagic events were 23,940 and 19,360 eggs/bird/d, respectively. The empirical conversions of eggs consumed to body mass gained (5,017 eggs/g for knots and 4,320 eggs/g for turnstones) indicate the large quantities of crab eggs required for the maintenance of these shorebird populations during stopover.  相似文献   

11.
Optimal foraging models predict that large predators should concentrate on large prey in order to maximize their net gain of energy intake. Here, we show that the largest species of sea turtle, Dermochelys coriacea, does not strictly adhere to this general pattern. Field observations combined with a theoretical model suggest that a 300 kg leatherback turtle would meet its energetic requirements by feeding for 3-4 h a day on 4 g jellyfish, but only if prey were aggregated in high-density patches. Therefore, prey abundance rather than prey size may, in some cases, be the overriding parameter for foraging leatherbacks. This is a classic example where the presence of small prey in the diet of a large marine predator may reflect profitable foraging decisions if the relatively low energy intake per small individual prey is offset by high encounter rates and minimal capture and handling costs. This study provides, to our knowledge, the first quantitative estimates of intake rate for this species.  相似文献   

12.
Kirk M  Esler D  Iverson SA  Boyd WS 《Oecologia》2008,155(4):859-867
The distribution of predators is widely recognized to be intimately linked to the distribution of their prey. Foraging theory suggests that predators will modify their behaviors, including movements, to optimize net energy intake when faced with variation in prey attributes or abundance. While many studies have documented changes in movement patterns of animals in response to temporal changes in food, very few have contrasted movements of a single predator species naturally occurring in dramatically different prey landscapes. We documented variation in the winter movements, foraging range size, site fidelity, and distribution patterns of a molluscivorous sea duck, the surf scoter (Melanitta perspicillata), in two areas of coastal British Columbia with very different shellfish prey features. Baynes Sound has extensive tidal flats with abundant clams, which are high-quality and temporally stable prey for scoters. Malaspina Inlet is a rocky fjord-like inlet where scoters consume mussels that are superabundant and easily accessible in some patches but are heavily depleted over the course of winter. We used radio telemetry to track surf scoter movements in both areas and found that in the clam habitats of Baynes Sound, surf scoters exhibited limited movement, small winter ranges, strong foraging site fidelity, and very consistent distribution patterns. By contrast, in mussel habitats in the Malaspina Inlet, surf scoters displayed more movement, larger ranges, little fidelity to specific foraging sites, and more variable distribution patterns. We conclude that features associated with the different prey types, particularly the higher depletion rates of mussels, strongly influenced seasonal space use patterns. These findings are consistent with foraging theory and confirm that predator behavior, specifically movements, is environmentally mediated.  相似文献   

13.
1. Functional responses -- the relationship between resource intake rate and resource abundance -- are widely used in explaining predator-prey interactions yet many studies indicate that resource availability is crucial in dictating intake rates. 2. For time-stressed migrant birds refuelling at passage sites, correct decisions concerning patch use are crucial as they determine fattening rates and an individual's future survival and reproduction. Measuring availability alongside abundance is essential if spatial and temporal patterns of foraging are to be explained. 3. A suite of shorebird species stage in Delaware Bay where they consume horseshoe crab Limulus polyphemus eggs. Several factors including spawning activity and weather give rise to marked spatial and temporal variation in the abundance and availability of eggs. We undertook field experiments to determine and contrast the intake rates of shorebird species pecking for surface and probing for buried eggs. 4. Whether eggs were presented on the sand surface or buried, we demonstrate strong aggregative responses and rapid depletion (up to 80%). Depletion was greater at deeper depths when more eggs were present. No consistent give-up densities were found. Type II functional responses were found for surface eggs and buried eggs, with peck success twice as high in the former. Maximum intake rates of surface eggs were up to 83% higher than those of buried eggs. 5. Caution is needed when applying functional responses predicted on the basis of morphology. Our expectation of a positive relationship between body size and intake rate was not fully supported. The smallest species, semipalmated sandpiper, had the lowest intake rate but the largest species, red knot, achieved only the same intake rate as the mid-sized dunlin. 6. These functional responses indicate that probing is rarely more profitable than pecking. Currently, few beaches provide egg densities sufficient for efficient probing. Areas where eggs are deposited on the sand surface are critical for successful foraging and ongoing migration. This may be especially true for red knot, which have higher energetic demands owing to their larger body size yet appear to have depressed intake rates because they consume smaller prey than their body size should permit.  相似文献   

14.
1. Many farmland bird species have undergone significant declines. It is important to predict the effect of agricultural change on these birds and their response to conservation measures. This requirement could be met by mechanistic models that predict population size from the optimal foraging behaviour and fates of individuals within populations. A key component of these models is the functional response, the relationship between food and competitor density and feeding rate. 2. This paper describes a method for measuring functional responses of farmland birds, and applies this method to a declining farmland bird, the corn bunting Miliaria calandra L. We derive five alternative models to predict the functional responses of farmland birds and parameterize these for corn bunting. We also assess the minimum sample sizes required to predict accurately the functional response. 3. We show that the functional response of corn bunting can be predicted accurately from a few behavioural parameters (searching rate, handling time, vigilance time) that are straightforward to measure in the field. These parameters can be measured more quickly than the alternative of measuring the functional response directly. 4. While corn bunting violated some of the assumptions of Holling's disk equation (model 1 in our study), it still provided the most accurate fit to the observed feeding rates while remaining the most statistically simple model tested. Our other models may be more applicable to other species, or corn bunting feeding in other locations. 5. Although further tests are required, our study shows how functional responses can be predicted, simplifying the development of mechanistic models of farmland bird populations.  相似文献   

15.
长江口杭州湾鸻形目鸟类群落季节变化和生境选择   总被引:14,自引:3,他引:11  
在长江口南岸杭州湾北岸滨海滩涂进行了鸻形目鸟类的资源调查,以及鸟类栖息地选择模式分析,2004年3月至2005年1月共统计到鸟类25种,春季优势种为大缤鹬(Calidris tenuirostris)、尖尾缤鹬(Calidris alpine)和红颈滨鹬(Calidris ruficollis);夏季为环颈(Charadrius alexandrinus)、青脚鹬(Tringa nebularia)和蒙古沙(Charadrius mongolus),秋季为环颈、红颈滨鹬和青脚鹬,冬季为黑腹滨鹬(Calidris alpina)、环颈和泽鹬(Tringa stagnatilis),鸟类总体数量呈春季>秋季>冬季>夏季,海堤外(自然滩涂)和堤内(人工湿地)鸟类种数四季大致相等,但鸟类平均密度季节差异显著。通过对样点内鸟类与环境因子进行多元分析,初步总结出堤外滩宽和光滩宽是影响鸟类栖息的最关键因子,海三棱草(Scirpus× mariquete)覆盖比例和潮上坪宽度的影响程度次之。堤内浅水塘比例和裸地比例是影响形目鸟类分布的关键因子,海三棱草覆盖比例也起正向作用。而人类干扰大、芦苇(Phragmites communis)/互花米草(Spartina alternifloral)密植和高水位的区域不利于鸟类利用。  相似文献   

16.
Managed wetlands provide critical foraging and roosting habitats for shorebirds during migration; therefore, ensuring their availability is a priority action in shorebird conservation plans. Contemporary shorebird conservation plans rely on a number of assumptions about shorebird prey resources and migratory behavior to determine stopover habitat requirements. For example, the US Shorebird Conservation Plan for the Southeast-Caribbean region assumes that average benthic invertebrate biomass in foraging habitats is 2.4 g dry mass m?2 and that the dominant prey item of shorebirds in the region is Chironomid larvae. For effective conservation and management, it is important to test working assumptions and update predictive models that are used to estimate habitat requirements. We surveyed migratory shorebirds and sampled the benthic invertebrate community in coastal managed wetlands of South Carolina. We sampled invertebrates at three points in time representing early, middle, and late stages of spring migration, and concurrently surveyed shorebird stopover populations at approximately 7-day intervals throughout migration. We used analysis of variance by ranks to test for temporal variation in invertebrate biomass and density, and we used a model based approach (linear mixed model and Monte Carlo simulation) to estimate mean biomass and density. There was little evidence of a temporal variation in biomass or density during the course of spring shorebird migration, suggesting that shorebirds did not deplete invertebrate prey resources at our site. Estimated biomass was 1.47 g dry mass m?2 (95 % credible interval 0.13–3.55), approximately 39 % lower than values used in the regional shorebird conservation plan. An additional 4728 ha (a 63 % increase) would be required if habitat objectives were derived from biomass levels observed in our study. Polychaetes, especially Laeonereis culveri (2569 individuals m?2), were the most abundant prey in foraging habitats at our site. Polychaetes have lower caloric content than levels assumed in the regional plan; when lower caloric content and lower biomass levels are used to determine habitat objectives, an additional 6395 ha would be required (86 % increase). Shorebird conservation and management plans would benefit from considering the uncertainty in parameters used to derive habitat objectives, especially biomass and caloric content of prey resources. Iterative testing of models that are specific to the planning region will provide rapid advances for management and conservation of migratory shorebirds and coastal managed wetlands.  相似文献   

17.
Varying environmental conditions and energetic demands can affect habitat use by predators and their prey. Anthropogenic habitats provide an opportunity to document both predation events and foraging activity by prey and therefore enable an empirical evaluation of how prey cope with trade‐offs between starvation and predation risk in environments of variable foraging opportunities and predation danger. Here, we use seven years of observational data of peregrine falcons Falco peregrinus and shorebirds at a semi‐intensive shrimp farm to determine how starvation and predation risk vary for shorebirds under a predictable variation in foraging opportunities. Attack rate (mean 0.1 attacks/hr, equating 1 attack every ten hours) was positively associated with the total foraging area available for shorebirds at the shrimp farm throughout the harvesting period, with tidal amplitude at the adjacent mudflat having a strong nonlinear (quadratic) effect. Hunt success (mean 14%) was higher during low tides and declined as the target flocks became larger. Finally, individual shorebird vigilance behaviors were more frequent when birds foraged in smaller flocks at ponds with poorer conditions. Our results provide empirical evidence of a risk threshold modulated by tidal conditions at the adjacent wetlands, where shorebirds trade‐off risk and rewards to decide to avoid or forage at the shrimp farm (a potentially dangerous habitat) depending on their need to meet daily energy requirements. We propose that semi‐intensive shrimp farms serve as ideal “arenas” for studying predator–prey dynamics of shorebirds and falcons, because harvest operations and regular tidal cycles create a mosaic of foraging patches with predictable food supply. In addition, the relatively low hunt success suggests that indirect effects associated with enhanced starvation risk are important in shorebird life‐history decisions.  相似文献   

18.
Populations of many shorebird species appear to be declining in North America, and food resources at stopover habitats may limit migratory bird populations. We investigated body condition of, and foraging habitat and diet selection by 4 species of shorebirds in the central Illinois River valley during fall migrations 2007 and 2008 (Killdeer [Charadrius vociferus], Least Sandpiper [Calidris minutilla], Pectoral Sandpiper [Calidris melanotos], and Lesser Yellowlegs [Tringa flavipes]). All species except Killdeer were in good to excellent condition, based on size-corrected body mass and fat scores. Shorebird diets were dominated by invertebrate taxa from Orders Diptera and Coleoptera. Additionally, Isopoda, Hemiptera, Hirudinea, Nematoda, and Cyprinodontiformes contribution to diets varied by shorebird species and year. We evaluated diet and foraging habitat selection by comparing aggregate percent dry mass of food items in shorebird diets and core samples from foraging substrates. Invertebrate abundances at shorebird collection sites and random sites were generally similar, indicating that birds did not select foraging patches within wetlands based on invertebrate abundance. Conversely, we found considerable evidence for selection of some diet items within particular foraging sites, and consistent avoidance of Oligochaeta. We suspect the diet selectivity we observed was a function of overall invertebrate biomass (51.2±4.4 [SE] kg/ha; dry mass) at our study sites, which was greater than estimates reported in most other food selection studies. Diet selectivity in shorebirds may follow tenants of optimal foraging theory; that is, at low food abundances shorebirds forage opportunistically, with the likelihood of selectivity increasing as food availability increases. Nonetheless, relationships between the abundance, availability, and consumption of Oligochaetes for and by waterbirds should be the focus of future research, because estimates of foraging carrying capacity would need to be revised downward if Oligochaetes are truly avoided or unavailable for consumption.  相似文献   

19.
Models of animal dispersion between habitat patches that differ in resource density assume that animals maximize their fitness by maximizing the rate at which they consume resources. How valid is this assumption? Studies on wading birds have been central to the application of dispersion models to predator-prey systems. However, these birds do not always attempt to maximize their rate of energy intake, implying that maximization involves costs as well as benefits. Overwintering oystercatchers feeding on cockles in the Burry Inlet, South Wales, do not consume the larger more energetically profitable cockles even though consuming these prey would increase their rate of energy intake. This paper tests the hypothesis that maximizing energy intake involves a trade-off with exposure to helminth parasites. Cockles are important intermediate hosts for helminth parasites, for which oystercatchers are the definitive host. The helminth intensity of cockles increased significantly with cockle size. A functional response model was used to examine how size selection by the birds influenced energy intake and the ingestion rate of parasites. To maximize energy intake birds should selectively consume the larger size classes, but to minimize the ingestion rate of parasites they should consume the smallest size classes. In the wild, birds selectively consumed intermediate size classes, which could represent a compromise between these conflicting demands. The implications for animal dispersion models are discussed.  相似文献   

20.
Abstract Shorebirds foraging in the intertidal have been shown to exert a significant effect on assemblage level processes; this is particularly true of the oystercatcher–limpet–algae system. The African black oystercatcher (Haematopus moquini) is endemic to the southern African coastline, where it plays a significant role in ecosystem processes as a rocky‐shore predator, especially of mussels and limpets. This understanding was based on studies of a rocky shore environment that has since been considerably modified following invasion of an alien mussel (Mytilus galloprovincialis). This invasion has not only changed the relative proportions of different food types on the shore, but has also greatly increased overall food biomass. We tested the previous model that food selection by oystercatchers reflected prey abundance and that intake by male and female oystercatchers differed owing to bill morphology. We predicted that this difference would persist despite the changed nature of the food base. We also predicted that wave action would modify prey selection as a result of both its influence on prey behaviour and its impact on searching and handling times of the birds. Overall, both sexes consumed more limpets than expected by encounter rate alone, but contrary to prediction, the relative proportions of different prey types taken post invasion did not differ between the sexes. Dietary convergence is interpreted as a result of greatly increased food biomass on the shore, which is also reflected in increased oystercatcher densities since the invasion. Also contrary to prediction there was no evidence that waves acted as indirect modifiers of the interaction between oystercatchers and their prey. The results of this study indicate that models of trophic cascades will need to be altered in the event of a significant change in a trophic level, which then effects behavioural changes in the key predator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号