首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Stable isotopes of carbon (δ13C) and nitrogen (δ15N) often have unique values among lake habitats (e.g. benthic, littoral, pelagic), providing a widely used tool for measuring the structure and energy flow in aquatic food webs. However, there has been little recognition of the spatial and temporal variabilities of these isotopes within habitats of aquatic ecosystems. To address this, δ13C and δ15N were measured in seston, zebra mussels (Dreissena polymorpha) and young-of-year (YOY) yellow (Perca flavescens), and white perch (Morone americana) collected from four sites across the offshore habitat of the western basin of Lake Erie during June–September 2009. Values of δ13C and δ15N showed significant spatial and temporal variations, with month accounting for >50% of the variation, for both stable isotopes and all the species except seston. Such variation in isotope values has the potential to significantly influence or confound interpretation of stable isotopes in measures, such as trophic position (TP) which use lower trophic level organisms as their baseline. For example, TP was found to vary up to 0.7 for yellow and white perch (TP = δ15Nfish − δ15Nzebra mussel/diet-tissue fractionation factor) depending on the zebra mussel data used (e.g., from a different location or a different collection month). As the use of stable isotopes continues to move from qualitative to more quantitative measures of trophic structure, food web research must recognize the importance of stable isotopes' variability in lower trophic level organisms, especially in large lake systems.  相似文献   

2.
Natural variability in stable isotope ratios and element concentrations in calcified structures of fish (e.g. scales and otoliths) has provided biogeochemical ‘tags’ for studying origins and movements of marine species, but has been little used in freshwater studies. We examine whether variability in scale δ15N and δ13C values of Salmo trutta L., could provide a tag of fish over small spatial scales in a small river catchment (River Dee, U.K.) and compared their performance as tags with that of scale/otolith element concentrations. Whole scale δ15N and δ13C values differed among six study sites and fish could be classified to their site of origin with a high degree of accuracy. Classifying fish to their site of capture was marginally superior using scale δ15N and δ13C values compared to that achieved using Sr, Mn, Ba and Mg in scale hydroxyapatite or otolith aragonite. Scale δ15N and δ13C values could therefore provide non-lethally collectable biogeochemical tags superior in performance to element concentrations in otoliths and scales. A comprehensive study of δ15N and δ13C values within freshwater systems would develop our understanding of factors influencing geographical variability in baseline δ15N and δ13C signatures.  相似文献   

3.
In marine food web studies, stable isotopes of nitrogen (δ15N) and carbon (δ13C) are widely used to estimate organisms’ trophic levels (TL) and carbon sources, respectively. For smaller organisms, whole specimens are commonly analyzed. However, this “bulk method” involves several pitfalls since different tissues may fractionate stable isotopes differently. We compared the δ15N and δ13C values of exoskeleton versus soft tissue, in relation to whole specimens, of three common Arctic amphipods in Svalbard waters: the benthic Anonyx nugax, the sympagic (ice-associated) Gammarus wilkitzkii and the pelagic Themisto libellula. The δ15N values of the exoskeletons were significantly lower than those of the soft tissues for A. nugax (10.5 ± 0.7‰ vs. 15.7 ± 0.7‰), G. wilkitzkii (3.3 ± 0.3‰ vs. 8.3 ± 0.4‰) and T. libellula (8.6 ± 0.3‰ vs.10.8 ± 0.3‰). The differences in δ13C values between exoskeletons and soft tissues were insignificant, except for A. nugax (−21.2 ± 0.2‰ vs. −20.3 ± 0.2‰, respectively). The δ15N values of whole organisms were between those of the exoskeletons and the soft tissues, being similarly enriched in 15N as the exoskeletons (except G. wilkitzkii) and depleted in 15N by 1.2–3.7‰ compared to the soft tissues. The δ15N-derived TLs of the soft tissues agreed best with the known feeding preferences of the three amphipods, which suggest a potential underestimation of 0.5–1.0 TL when stable isotope analyses are performed on whole crustaceans with thick exoskeletons. The insignificant or small differences in δ13C values among exoskeletons, soft tissues and whole specimens, however, suggest low probability for misinterpretations of crustaceans’ primary carbon source in marine ecosystems with distinctly different δ13C-carbon sources.  相似文献   

4.
Regional food web studies that fail to account for small-scale isotopic variability can lead to a mismatch between an organism’s inferred and true trophic position. Misinterpretation of trophic status may result, substantially limiting spatial and temporal comparability of food web studies. We sampled several carbon sources and consumers in a nested design to assess the variability of food web members across small spatial scales (100 s of m to several km) in regions around the Windmill Islands and Vestfold Hills in East Antarctica. For carbon sources, δ13C in sea ice POM was particularly variable between locations (km apart) and between sites (100 s of m apart) with replicate samples varying by up to 16‰. Macroalgae δ13C was less variable (replicate samples ranging up to 6.9‰ for the red alga Iridaea cordata), yet still differed between locations. Sediment POM and pelagic POM were the least variable, displaying minimal differences between locations or sites for δ13C and δ15N. Three out of eight consumers were significantly different between locations for δ13C, and five out of eight for δ15N, with the fish Trematomus bernacchii the most variable for both δ13C and δ15N. At smaller scales, the amphipod Paramorea walkeri showed significant variation between sites in δ13C but not in δ15N. We attribute small-scale variability to the dynamic physical environment for carbon sources in coastal systems and a close coupling of diet to habitat for consumers. We highlight the need to account for small-scale spatial variation in sampling designs for regional food web studies.  相似文献   

5.
Carbon and nitrogen stable isotopes are frequently used to study energy sources and food web structure in ecosystems, and more recently, to study the effects of anthropogenic stress on aquatic ecosystems. We investigated the effect of nutrient enrichment on δ13C and δ15N in fine (FPOM), coarse (CPOM) particulate organic matter, periphyton, invertebrates and fish in nine boreal streams in south-central Sweden. In addition, we analysed the diet of benthic consumers using stable isotope data. Increases in δ15N of periphyton (R 2 = 0.88), CPOM (0.78), invertebrates (0.92) and fish (0.89) were related to nutrient enrichment. In contrast, δ13C signatures did not change along the nutrient gradient. Our results show that δ15N has potential as a sensitive indicator of nutrient enrichment in boreal streams. Carbon and nitrogen isotopes failed to elucidate putative diets of selected aquatic consumers. Indeed, comparison of low- and high-impact sites showed that δ13C of many consumers were found outside the ranges of basal resource δ13C. Moreover, ranges of basal resource δ13C and δ15N overlapped at both low and high sites, making discrimination between the importance of allochthonous and autochthonous production difficult. Our findings show that a fractionation rate of 3.4‰ is not always be appropriate to assess trophic interactions, suggesting that more studies are needed on fractionation rates along gradients of impairment. Handling editor: M. Power  相似文献   

6.
Studies were performed of the carbon and nitrogen stable isotope (δ13C and δ15N) composition (δ13C and δ15N) of the corals Porites cylindrica and P. lutea (5 years after damaging the colonies by the bleaching events) and of epilithic algae settled onto damaged areas of coral colonies. Coral polyps and three epilithic algal communities (‘red algal turf, green algal turf and red calcified crusts’) were sampled along the boundary between communities of coral polyps and algal colonizers from differently illuminated habitats from 2 to 90% of incident surface photosynthetically active radiation (PAR0). It was found that communities with a predominance of red algae significantly differed from communities with a predominance of green algae in δ13C but not in δ15N values. An influence of habitat irradiance was found only for communities of coral polyps for δ13C and δ15N values: under bright light (70–90% PAR0) polyp tissues of both coral species were significantly enriched in heavy carbon isotopes and insignificantly in nitrogen isotopes (δ13C values difference ~4‰) relative to tissues of corals under lower light 15–50% PAR0. On the basis of these results we assumed that differences in light intensities in the habitat ranging from 15 to 90% PAR0 do not influence on accessibility of the main carbon and nitrogen sources for corals and algae, and exchange by these elements between organisms. We also assumed that the relative enrichment in the heavy carbon isotopes of coral tissues in high light is a result of decreased isotope fractionation (or the absence of fractionation in photosynthesis of their zooxanthellae).  相似文献   

7.
Studies of food webs often employ stable isotopic approaches to infer trophic position and interaction strength without consideration of spatio-temporal variation in resource assimilation by constituent species. Using results from laboratory diet manipulations and monthly sampling of field populations, we illustrate how nitrogen isotopes may be used to quantify spatio-temporal variation in resource assimilation in ants. First, we determined nitrogen enrichment using a controlled laboratory experiment with the invasive Argentine ant (Linepithema humile). After 12 weeks, worker δ15N values from colonies fed an animal-based diet had δ15N values that were 5.51% greater compared to colonies fed a plant-based diet. The shift in δ15N values in response to the experimental diet occurred within 10 weeks. We next reared Argentine ant colonies with or without access to honeydew-producing aphids and found that after 8 weeks workers from colonies without access to aphids had δ15N values that were 6.31% larger compared to colonies with access to honeydew. Second, we sampled field populations over a 1-year period to quantify spatio-temporal variability in isotopic ratios of L. humile and those of a common native ant (Solenopsis xyloni). Samples from free-living colonies revealed that fluctuations in δ15N were 1.6–2.4‰ for L. humile and 1.8–2.9‰ for S. xyloni. Variation was also detected among L. humile castes: time averaged means of δ15N varied from 1.2 to 2.5‰ depending on the site, with δ15N values for queens ≥ workers > brood. The estimated trophic positions of L. humile and S. xyloni were similar within a site; however, trophic position for each species differed significantly at larger spatial scales. While stable isotopes are clearly useful for examining the trophic ecology of arthropod communities, our results suggest that caution is warranted when making ecological interpretations when stable isotope collections come from single time periods or life stages.  相似文献   

8.
Wissel B  Fry B 《Oecologia》2005,144(4):659-672
The Breton Sound estuary in southern Louisiana receives large amounts of Mississippi River water via a controlled diversion structure at the upstream end of the estuary. We used stable isotopes to trace spatial and seasonal responses of the downstream food web to winter and spring introductions of river water. Analysis of δ13C, δ15N, and δ34S in the common local consumers such as grass shrimp (Palaemonetes sp.), barnacles (Balanus sp.), and small plankton-feeding fish (bay anchovies, Anchoa mitchilli) showed that the diversion was associated with two of the five major source regimes that were supporting food webs: a river regime near the diversion and a river-influenced productive marsh regime farther away from the diversion. Mixing models identified a third river-influenced source regime at the marine end of the estuary where major natural discharge from the Bird’s Foot Delta wraps around into estuarine waters. The remaining two source regimes represented typical estuarine conditions: local freshwater sources especially from precipitation and a brackish source regime representing higher salinity marine influences. Overall, the Mississippi River diversion accounted for 75% of food web support in the upper estuary and 25% in the middle estuary, with influence strongest along known flow pathways and closest to the diversion. Isotopes also traced seasonal changes in river contributions, and indicated increased plant community productivity along the major flow path of diversion water. In the Breton Sound estuary, bottom–up forcing of food webs is strongly linked to river introductions and discharge, occurring in spatial and temporal patterns predictable from known river input regimes and known hydrologic circulation patterns.  相似文献   

9.
Synopsis Spatial patterns of resource use by small-bodied fishes in the San Juan River were examined using stable isotopes. Using δ15N of fishes as an index of trophic position, our data suggest both native and non-native fishes primarily consumed macro-invertebrates. The δ13C of these fishes further suggested a detritus-based food web, from which most species fed on chironomids in low-velocity habitats. A two-way ANOVA revealed a significant interaction between trophic level of fish species and longitudinal position in the river. This interaction was primarily attributed to a decline in trophic level of non-native red shiner Cyprinella lutrensis, relative to other species, in upstream reaches of the river. In addition, ANCOVA results suggest trophic position of fishes was dependent on channel type (primary vs. secondary), as there was less variability in resource use in secondary channels. These data provided a spatial framework of trophic interactions that can be used to predict the outcome of management actions. Overall, we confirmed high overlap in resource used between native and non-native fishes. However, spatial variation in trophic interactions both longitudinally and laterally in the river present a challenge to resource managers attempting to managing entire river systems.  相似文献   

10.
Food web structure regulates the pathways and flow rates of energy, nutrients, and contaminants to top predators. Ecologically and physiologically meaningful biochemical tracers provide a means to characterize and quantify these transfers within food webs. In this study, changes in the ratios of stable N isotopes (e.g., δ15N), fatty acids (FA), and persistent contaminants were used to trace food web pathways utilized by herring gulls (Larus argentatus) breeding along the shores of the St Lawrence River, Canada. Egg δ15N values varied significantly among years and were used as an indicator of gull trophic position. Temporal trends in egg δ15N values were related to egg FA profiles. In years when egg δ15N values were greater, egg FA patterns reflected the consumption of more aquatic prey. Egg δ15N values were also correlated with annual estimates of prey fish abundance. These results indicated that temporal changes in aquatic prey availability were reflected in the gull diet (as inferred from ecological tracer profiles in gull eggs). Analysis of individual eggs within years confirmed that birds consuming more aquatic prey occupied higher trophic positions. Furthermore, increases in trophic position were associated with increased concentrations of most persistent organic contaminants in eggs. However, levels of highly brominated polybrominated diphenyl ether congeners, e.g, 2,2′,3,3′,4,4′,5,5′,6,6′-decabromoDE (BDE-209), showed a negative relationship with trophic position. These contrasting findings reflected differences among contaminant groups/homologs in terms of their predominant routes of transfer, i.e., aquatic versus terrestrial food webs. High trophic level omnivores, e.g., herring gulls, are common in food webs. By characterizing ecological tracer profiles in such species we can better understand spatial, temporal, and individual differences in pathways of contaminant, energy, and nutrient flow.  相似文献   

11.
The great spatial and temporal variability of nitrogen (N) processing introduces large uncertainties for quantifying N cycles in large scales, e.g. a watershed scale, and hence challenges the present techniques in measuring ecosystem N mass balance. The dual isotopes of nitrate (δ18O and δ15N) integrate signals for both nitrate sources and N processing, making them promising for studies on large scale N cycling. Here, the dual isotopes, as well as some ion tracers, from a subtropical river in south China were reported to identify the main nitrate sources and to assess the possible occurrence and degree of denitrification in the context of monsoon climate. Our results indicated that nitrification of reduced fertilizer N in soil zones was the main nitrate source, with sewage and manure as another important source in dry winter. Seasonal changes of denitrification was apparent by the ~1:2 enrichment of 18O and 15N from April to August, and suggested to occur over the watershed rather than in the river. The lowest denitrification (10%) occurred in April, when the fertilizer application was strongest and the monsoon rainfall abruptly increased, causing enhancement of leaching. The highest denitrification (48%) took place in August due to the high soil temperature and moisture. In December, denitrification was significant (26%) perhaps due to the high enough temperature for microbial activities, whereas the low soil moisture appeared to limit the degree of denitrification. This study suggests that the seasonal variations in denitrification should be taken into account when estimating regional N mass balance.  相似文献   

12.
Feeding habits of ringed (Phoca hispida), bearded (Erignathus barbatus), spotted (Phoca largha) and ribbon (Phoca fasciata) seals and walrus (Odobenus rosmarus) were studied using stomach contents and stable carbon and nitrogen isotopes. Bearded seals fed benthically, primarily crustaceans and mollusks. Both zooplankton and fish were significant prey for ringed seals, while fish was principal spotted seal prey. Few gastric contents were available from ribbon seals. δ15N was positively correlated with age in ribbon seals and δ13C was positively correlated with age in ringed and ribbon seals. δ15N was highest in spotted seals, in agreement with their fish-dominated diet. δ15N was not different between Alaskan-harvested ringed and bearded seals, while δ15N was lowest in ribbon seals and walrus. Carbon-13 was most enriched in bearded seals and walrus reflecting benthic ecosystem use. Canadian ringed seals were depleted in 13C compared to Alaskan pinnipeds, likely because of Beaufort Sea versus Chukchi and Bering seas influence.  相似文献   

13.
Variation in the stable N isotope ratio (δ15N) of plants and soils often reflects the influence of environment on the N cycle. We measured leaf δ15N and N concentration ([N]) on all individuals of Prosopis glandulosa (deciduous tree legume), Condalia hookeri (evergreen shrub), and Zanthoxylum fagara (evergreen shrub) present within a belt transect 308 m long × 12 m wide in a subtropical savanna ecosystem in southern Texas, USA in April and August 2005. Soil texture, gravimetric water content (GWC), total N and δ15N were also measured along the transect. At the landscape scale, leaf δ15N was negatively related to elevation for all the three species along this topoedaphic sequence. Changes in soil δ15N, total N, and GWC appeared to contribute to this spatial pattern of leaf δ15N. In lower portions of the landscape, greater soil N availability and GWC are associated with relatively high rates of both N mineralization and nitrification. Both soil δ15N and leaf [N] were positively correlated with leaf δ15N of non-N2 fixing plants. Leaf δ15N of P. glandulosa, an N2-fixing legume, did not correlate with leaf [N]; the δ15N of P. glandulosa’s leaves were closer to atmospheric N2 and significantly lower than those of C. hookeri and Z. fagara. Additionally, at smaller spatial scales, a proximity index (which reflected the density and distance of surrounding P. glandulosa trees) was negatively correlated with leaf δ15N of C. hookeri and Z. fagara, indicating the N2-fixing P. glandulosa may be important to the N nutrition of nearby non-N2-fixing species. Our results indicate plant 15N natural abundance can reflect the extent of N retention and help us better understand N dynamics and plant-soil interactions at ecosystem and landscape scales.  相似文献   

14.
The purpose of this study was to assess if there was trophic niche overlap of silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) in four large freshwater ecosystems from southern China using stable carbon and nitrogen isotopes (δ13C and δ15N). Multivariate analysis of variance (MANOVA) on the δ13C and δ15N values measured from muscle tissue indicates trophic niche overlap in one unproductive and one highly productive large system and trophic niche segregation in two systems with moderate watershed size and productivity. For these two coexisting planktivorous fish, which were hitherto believed to occupy different trophic niches, this study demonstrated that the degree of their trophic niche overlap varied according to ecosystem properties.  相似文献   

15.
Topography should create spatial variation in water and nutrients and play an especially important role in the ecology of water-limited systems. We use stable isotopes to discern how plants respond both to ecological gradients associated with elevation and to neighboring legumes on a south-facing slope in the semi-arid, historically grazed steppe of northern Mongolia. Out of three target species, Potentilla acaulis, Potentilla sericea, and Festuca lenensis, when >30 cm from a legume, all showed a decrease in leaf δ15N with increasing elevation. This, together with measures of soil δ15N, suggests greater N processing at the moister, more productive, lower elevation, and more N fixation at the upper elevation, where cover of legumes and lichens and plant-available nitrate were greater. Total soil N was greater at the lower elevation, but not lichen biomass or root colonization by AMF. Leaf δ13C values for P. acaulis and F. lenensis are consistent with increasing water stress with elevation; δ13C values indicated the greatest intrinsic water use efficiency for P. sericea, which is more abundant at the upper elevation. Nearby legumes (<10 cm) moderate the effect of elevation on leaf δ15N, confirming legumes’ meaningful input of N, and affect leaf δ13C for two species, suggesting an influence on the efficiency of carbon fixation. Variation in leaf %N and %C as a function of elevation and proximity to a legume differs among species. Apparently, most N input is at upper elevations, pointing to the possible importance of grazers, in addition to hydrological processes, as transporters of N throughout this landscape.  相似文献   

16.
Benthic biofilms have been identified using stable isotope analysis (SIA) as an important resource supporting many freshwater food webs. However, biofilm δ13C signatures are highly variable in freshwaters, which may hamper our understanding of energy flow through food webs in these systems. There has been little consideration of the influence that substratum may have on biofilm δ13C signature variability and energy flows to primary consumers. We investigated the effect of organic and inorganic substrata on biofilm dynamics by examining: (1) temporal variability of biofilm stable isotope (δ13C, δ15N) signatures on allochthonous leaf-litter (Eucalyptus camaldulensis) and cobble substrata over 12 months in a lowland river in south-eastern Australia; and (2) the effect of substrata on biofilm energy flows to a grazer snail, Physa acuta (Gastropoda: Physidae), using SIA and ecological stoichiometry in a laboratory experiment. The temporal study indicated that cobble biofilm varied significantly in δ13C signature during the 12 months (up to 11‰), whereas the δ13C signature of leaf biofilm was less variable (less than 2‰). In contrast, biofilm δ15N signatures varied temporally on both cobble (2.6‰) and leaf (1‰) substrata. This suggests that leaf biofilm was more reliant on leaf tissue for carbon and therefore less limited by carbon supply than cobble biofilm whereas for nitrogen biofilm on both substrata was reliant on external sources. In the laboratory experiment, snails fed leaf biofilm reflected more of an allochthonous δ13C signature than cobble biofilm fed snails, suggesting assimilation of leaf carbon via the heterotrophic microbial community within the biofilm. Snails grew largest on cobble biofilm, which had lower C:N ratios than leaf biofilm. Our results demonstrate that the type of substratum can influence the temporal variability of biofilm δ13C signatures and energy flow to primary consumers.  相似文献   

17.
When using stable isotopes as dietary tracers it is essential to consider effects of nutritional state on isotopic fractionation. While starvation is known to induce enrichment of 15N in body tissues, effects of moderate food restriction on isotope signatures have rarely been tested. We conducted two experiments to investigate effects of a 50–55% reduction in food intake on δ15N and δ13C values in blood cells and whole blood of tufted puffin chicks, a species that exhibits a variety of adaptive responses to nutritional deficits. We found that blood from puffin chicks fed ad libitum became enriched in 15N and 13C compared to food-restricted chicks. Our results show that 15N enrichment is not always associated with food deprivation and argue effects of growth on diet–tissue fractionation of nitrogen stable isotopes (Δ15N) need to be considered in stable isotope studies. The decrease in δ13C of whole blood and blood cells in restricted birds is likely due to incorporation of carbon from 13C-depleted lipids into proteins. Effects of nutritional restriction on δ15N and δ13C values were relatively small in both experiments (δ15N: 0.77 and 0.41‰, δ13C: 0.20 and 0.25‰) compared to effects of ecological processes, indicating physiological effects do not preclude the use of carbon and nitrogen stable isotopes in studies of seabird ecology. Nevertheless, our results demonstrate that physiological processes affect nitrogen and carbon stable isotopes in growing birds and we caution isotope ecologists to consider these effects to avoid drawing spurious conclusions.  相似文献   

18.
Retrospective investigations using carbon and nitrogen stable isotope composition of archived material have a great potential for describing past effects of anthropogenic ecosystem alterations or natural shifts in ecosystems. In this study, we examined the effects of two commonly used preservation substances of freshwater invertebrates, ethanol and lugol, on δ13C and δ15N of various planktonic and benthic taxa. For both isotopes, the average effect of fixation in ethanol was stronger than in lugol, and the effects on δ13C were stronger than on δ15N (average ± SD: 1.18 ± 0.94 and −0.47 ± 0.99 for δ13C ethanol and lugol fixed samples, respectively, and 0.39 ± 0.68 and 0.17 ± 0.77 for δ15N, respectively). The changes in the isotopic composition were not dependent on the initial isotopic composition of each taxon, but were related with concomitant changes in the carbon or nitrogen content. Application of a mass balance correction equation to the fixed samples resulted in a significantly lower average effect of fixation in ethanol (0.01 ± 0.59 and 0.44 ± 0.65 for δ15N and δ13C, respectively), while corrections had little effect for lugol fixed samples (0.24 ± 0.53 and −0.39 ± 0.85, respectively). For both isotopes and fixatives, corrections resulted in linear relationships between fixed vs. control samples, with slopes and intercepts not significantly different from 1 and 0, respectively. Therefore, mass balance correction of stable isotopes in fixed invertebrates is recommended for minimising the effects of fixation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: M. Power  相似文献   

19.
Sears J  Hatch SA  O'Brien DM 《Oecologia》2009,159(1):41-48
A growing number of studies suggest that an individual’s physiology affects its carbon and nitrogen stable isotope signatures, obscuring a signal often assumed to be only a reflection of diet and foraging location. We examined effects of growth and moderate food restriction on red blood cell (RBC) and feather δ15N and δ13C in rhinoceros auklet chicks (Cerorhinca monocerata), a piscivorous seabird. Chicks were reared in captivity and fed either control (75 g/day; n = 7) or ~40% restricted (40 g/day; n = 6) amounts of high quality forage fish. We quantified effects of growth on isotopic fractionation by comparing δ15N and δ13C in control chicks to those of captive, non-growing subadult auklets (n = 11) fed the same diet. To estimate natural levels of isotopic variation, we also collected blood from a random sample of free-living rhinoceros auklet adults and chicks in the Gulf of Alaska (n = 15 for each), as well as adult feather samples (n = 13). In the captive experiment, moderate food restriction caused significant depletion in δ15N of both RBCs and feathers in treatment chicks compared to control chicks. Growth also induced depletion in RBC δ15N, with chicks exhibiting lower δ15N when they were growing the fastest. As growth slowed, δ15N increased, resulting in an overall pattern of enrichment over the course of the nestling period. Combined effects of growth and restriction depleted δ15N in chick RBCs by 0.92‰. We propose that increased nitrogen-use efficiency is responsible for 15N depletion in both growing and food-restricted chicks. δ15N values in RBCs of free-ranging auklets fell within a range of only 1.03‰, while feather δ15N varied widely. Together, our captive and field results suggest that both growth and moderate food restriction can affect stable isotope ratios in an ecologically meaningful way in RBCs although not feathers due to greater natural variability in this tissue.  相似文献   

20.
Investigations into trophic ecology and aquatic food web resolution are increasingly accomplished through stable isotope analysis. The incorporation of dietary and metabolic changes over time results in variations in isotope signatures and turnover rates of producers and consumers at tissue, individual, population and species levels. Consequently, the elucidation of trophic relationships in aquatic systems depends on establishing standard isotope values and tissue turnover rates for the level in question. This study investigated the effect of diet and food quality on isotopic signatures of four mussel tissues: adductor muscle, gonad, gill and mantle tissue from the brown mussel Perna perna. In the laboratory, mussels were fed one of the two isotopically distinct diets for 3 months. Although not all results were significant, overall δ13C ratios in adductor, mantle and gill tissues gradually approached food source signatures in both diets. PERMANOVA analyses revealed significant changes over time in tissue δ13C (mantle and gill) with both diets and in δ15N (all tissues) and C:N ratios (mantle and gill) for one diet only. The percentage of replaced carbon isotopes were calculated for the 3 month period and differed among tissues and between diets. The tissue with the highest and lowest amount of replaced isotopes over 81 days were mantle tissue on the kelp diet (33.89%) and adductor tissue on the fish food diet (4.14%), respectively. Percentages could not be calculated for any tissue in either diet for δ15N due to the lack of significant change in tissue nitrogen. Fractionation patterns in tissues for both diets can be linked to nutritional stress, suggesting that consumer isotopic signatures are strongly dependent on food quality, which can significantly affect the degree of isotopic enrichment within a trophic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号