首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
滴滴涕(DDTs)和多环芳烃(PAHs)是土壤中典型的持久性有机污染物,环境毒性强,可对生物体产生不利影响。采用田间试验,研究阴-非离子混合表面活性剂[十二烷基苯磺酸钠(SDBS)和失水山梨醇单油酸酯聚氧乙烯醚(Tween80),混合质量比为2∶3]和生物表面活性剂鼠李糖脂(RL)对混合菌[球形节杆菌(Arthrobacter globiformis)和甲基营养型芽孢杆菌(Bacillus methylotrophicus),混合体积比为2∶1]在农田土壤滴滴涕-多环芳烃(DDTs-PAHs)复合污染修复过程中的强化作用。结果表明,SDBS-Tween80和RL均能不同程度地促进混合菌对农田土壤中DDTs-PAHs的降解。在SDBS-Tween80强化混合菌处理中,当SDBS-Tween80处理量为100 mg·kg~(-1)时,土壤中DDTs和PAHs的150 d降解率最高,分别达到57.8%和35.6%,比单独混合菌处理分别提高了14.9%和11.9%。在RL强化混合菌处理中,当RL处理量为5 mg·kg~(-1)时,土壤中DDTs和PAHs的150 d降解率最高,分别达到50.3%和28.6%,比单独混合菌处理分别提高了7.4%和4.9%。因此,SDBS-Tween80的最佳用量比RL更有利于提高DDTs-PAHs复合污染土壤的生物修复效果,DDTs和PAHs降解率提高8%左右,且SDBS-Tween80的修复成本更低。当100 mg·kg~(-1)SDBS-Tween80能显著提高p,p'-DDE和高环数PAHs的降解率,分别为63.0%和30.6%,比单独混合菌处理分别提高了18.8%和12.7%,该方法在复合污染土壤修复中具有良好的应用前景。  相似文献   

2.
为了提高设施农业滴滴涕(DDTs)污染土壤的修复效果,通过田间实验研究不同浓度的混合化学表面活性剂(SDBS-TW80)和生物表面活性剂鼠李糖脂(RL)对油菜和甲基营养型芽孢杆菌(Bacillus methylotrophicus)联合去除设施农业土壤中DDTs的强化作用。结果表明,1个月后,单种油菜处理、接种降解菌和油菜-降解菌联合处理土壤中DDTs降解率分别为12.0%、38.2%和43.1%,显著高于对照处理。SDBS-TW80和RL均能不同程度地强化油菜-微生物对土壤中滴滴涕的去除效果。SDBS-TW80施加量为40 mg·kg~(-1)时设施农业土壤中滴滴涕降解率最高(56.5%),RL施加量为5 mg·kg~(-1)时降解率最高(65.7%),RL比SDBS-TW80更有利于提高DDTs污染土壤的生物修复效果。此外,当RL施加量为5 mg·kg~(-1)时对于毒性较强的p,p'-DDE也具有较好的降解效果,降解率高达69.5%。结果证实利用表面活性剂强化油菜联合甲基营养型芽孢杆菌现场修复DDTs污染土壤是可行的。考虑到修复效率和毒害作用,实际应用中应优先选用5 mg·kg~(-1)RL组合。  相似文献   

3.
以滴滴涕(DDT)为目标污染物,采用课题组前期研究所筛选出的滴滴涕降解菌——甲基营养型芽孢杆菌(Bacillus methylotrophicus)菌液为供试菌液,选取混合表面活性剂[十二烷基苯磺酸钠(SDBS)和吐温80(Tween80),比例为2∶3]及生物表面活性剂-鼠李糖脂(RL)作为供试表面活性剂,通过田间小区实验,研究了表面活性剂、DDT降解菌对土壤中DDT的去除、降解情况以及两者联合处理对土壤中DDT污染的修复效果。结果表明,在单独添加表面活性剂的处理中,H300、RL5和RL10的处理效果最好,土壤中DDT的降解率最高可达29.60%。单独接种降解菌处理的土壤中DDT残留量显著减少,5个月后降解率可达47.05%。混合表面活性剂与菌株联合处理1个月后,H70+N的DDT降解率最高,可达63.53%;生物表面活性剂-降解菌处理以RL20+N的DDT降解率最高,可达42.32%。随着处理时间延长,表面活性剂与菌株联合处理土壤中DDT降解率的增幅逐渐下降。在处理5个月后,混合表面活性剂-降解菌的处理中以H70+N的DDT降解率最高,可达63.98%;生物表面活性剂-降解菌的处理中以RL20+N的DDT降解率最高,可达45.64%;混合表面活性剂-降解菌的处理效果略优于生物表面活性剂+菌,其中H70+N的处理效果最好,为63.98%。  相似文献   

4.
以多环芳烃(PAHs)污染场地土壤为研究对象,研究了不同工艺条件的生物堆反应器中PAHs降解效果,并通过对PAHs高效降解混菌的筛选富集,探讨菌液投加对生物堆技术处理PAHs污染土壤的强化修复作用效能.结果表明,生物堆运行过程中土壤pH和含水率基本保持稳定,总PAHs在9 d内快速降解,降解率达到80%以上,之后基本不...  相似文献   

5.
北方寒冷地区存在大面积中低浓度多环芳烃(PAHs)污染土壤,潜在威胁生态安全与人群健康。以混合型生物炭(C500+W500)为载体,以耐冷假单胞菌(Pseudomonas sp.,S4)与高山被孢霉(Mortierella alpine,J7)为PAHs降解混合菌,采用吸附固定化方法制备生物修复材料,研究了低温条件下混合型/单一型生物炭加载耐冷混合菌对土壤菲(Phe)、芘(Pyr)的降解效果,并探讨生物炭对土壤中PAHs微生物降解过程的强化机理。结果表明:混合型生物炭固定化微生物对土壤Phe、Pyr的修复效果高于游离菌,亦高于单一类型生物炭固定化菌剂,并且修复效果与生物炭的混合比例有关。15℃条件下修复30 d后,以w=1.34%C500与w=0.67%W500混合生物炭为载体的固定化混合菌(CWJ2:1)对Phe和Pyr的去除率分别为51.87%和45.28%,高于游离菌25.81%和23.65%,亦高于单一生物炭固定化组15.63%-18.96%和13.62%-16.07%。生物炭添加后,减少了土壤对Phe的吸附量,促进土壤中PAHs进入生物相,提高土壤PAHs微生物可利用性。在P...  相似文献   

6.
选取山东省分布较广的3种类型土壤(潮土、褐土和棕壤)为研究对象,采用室内土柱淋滤实验,模拟多环芳烃(PAHs)在土壤中纵向迁移的过程.选用生物表面活性剂鼠李糖脂和非离子表面活性剂TX-100分别对3种土壤进行淋滤实验,分析淋滤后较清洁土层PAHs的含量和组成.结果表明,3种类型土壤中,潮土最有利于土壤中PAHs的纵向迁移,褐土和棕壤无显著差异(P0.05);不同淋滤处理下,PAHs均主要富集在土柱表层,占39.00%—60.00%;有无表面活性剂的添加,低环PAHs均较易向下迁移,在污染土壤中的残留率为14.33%—38.52%;不添加表面活性剂条件下高环PAHs在污染土中残留率较高,为79.67%—92.47%,在鼠李糖脂3倍(3 CMC)和TX-100 2倍(2 CMC)临界胶束浓度条件下淋滤效果有明显提高,污染土中高环PAHs残留率与去离子水淋滤时相比降低28.95%—35.31%;相同临界胶束浓度下,TX-100处理后PAHs淋滤率高于鼠李糖脂,淋滤效果更好.  相似文献   

7.
已有研究证明能从有PAHs污染的区域筛选相应的降解菌,海南红树林存在PAHs污染,但少有研究从海南红树林沉积物中筛选PAHs降解菌。文章的研究目的是从海南不同红树林分布区的沉积物中筛选PAHs的降解菌群比较PAHs的降解菌群降解特征,并阐明菌群降解率和菌群结构之间的关系,为环境中PAHs污染区域修复提供理论依据。通过采集海南不同红树林中24个样点的沉积物,以菲、芘、苯并(a)芘3种PAHs为混合碳源,富集培养降解菌群,用HPLC测定菌群降解率,以传统分离培养的方法比较菌群组成差异。所有样点筛得的群对3种底物的平均降解效率为菲(3-环)芘(4-环)苯并(a)芘(5-环)。由贪噬菌属和剑菌属组成的菌群Q15,对菲的降解率达到95.3%,由伯克氏菌属、鞘脂单胞菌属组成的菌群Q12对芘降解率为94%,仅有申氏菌属的菌群Q9,对苯并(a)芘降解率为49.7%。所有样点共筛得23个属60个种的降解菌,除两株为厚壁菌门外,其他均为变形菌门。其中变形菌门中菌DAC9的16S rRNA序列与最相近的菌株序列一致性为97%,可能是潜在新菌。结果表明,红树林沉积物中富集培养的PAHs降解菌群对3种底物的降解效率存在差异,其中中低环PAHs更易被降解。不同的菌属组合对PAHs的降解能力不同。并从沉积物中筛选出了一株潜在新菌。  相似文献   

8.
混种模式对土壤中PAHs污染的强化修复作用   总被引:1,自引:0,他引:1  
以菲、芘为多环芳烃(PAHs)的代表,选择多环芳烃初始浓度在20.05~322.06 mg·kg-1的污染土壤为研究对象,采用温室盆栽的方法,选用三叶草(Trifolium repens)单种、紫花苜蓿(Medicago sativa)单种和三叶草-紫花苜蓿混种3种模式,通过测定实验70 d后土壤中PAHs的浓度,研究不同种植模式下植物对PAHs污染的去除效果和修复机制。结果表明,(1)在实验浓度范围内,在三叶草和紫花苜蓿混种模式下,土壤中PAHs的去除率最高,明显高于单种模式。在70 d的实验期间,约有75.47%的菲和68.28%的芘被降解,而单种模式下三叶草和紫花苜蓿对菲的降解率分别为31.79%和64.03%,对芘的降解率分别为27.97%和52.18%。(2)相同污染水平下,茎叶部PAHs的含量低于根部,菲的含量低于芘,混种模式下植物体内PAHs的含量低于单种模式下的含量。(3)生物作用对土壤中菲的去除率在三叶草、紫花苜蓿组和混合组中分别为26.69%、58.98%和69.84%,对芘的去除率分别为25.29%、48.98%和65.86%,明显高于非生物作用。在生物作用中植物-微生物的联合效应是最主要的,在三叶草组、紫花苜蓿组和混合组中对菲、芘的去除率分别为6.95%、34.85%、42.95%和6.3%、26.78%、38.98%。微生物作用在各种模式下相同,混种模式下,植物作用、植物-微生物联合效应均高于单种模式。说明借助多物种混合种植模式对改善PAHs污染土壤修复效果、减少植物体内PAHs积累和缓解生态风险具有可行性。  相似文献   

9.
土壤多环芳烃污染根际修复研究进展   总被引:13,自引:2,他引:13  
许超  夏北成 《生态环境》2007,16(1):216-222
多环芳烃(polycyclicaromatichydrocarbons,PAHs)是环境中普遍存在的具有代表性的一类重要持久性有机污染物,具“三致性”、难降解性,在土壤环境中不断积累,严重危害着土壤的生产和生态功能、农产品质量和人类健康。修复土壤多环芳烃污染已成为研究的焦点。根际修复是利用植物-微生物和根际环境降解有机污染物的复合生物修复技术,是目前最具潜力的土壤生物修复技术之一。对国内外学者近年来在土壤多环芳烃污染根际修复的效果、根际修复机理和根际修复的影响因素方面的研究进展作了较系统的综述,并分别分析了单作体系、混作体系、多进程根际修复系统和接种植物生长促进菌根际修复系统对土壤多环芳烃的修复效果。指出根际环境对PAHs的修复主要有3种机制:根系直接吸收和代谢PAHs;植物根系释放酶和分泌物去除PAHs,增加根际微生物数量,提高其活性,强化微生物群体降解PAHs。并讨论了影响根际修复PAHs的环境因素如植物、土壤类型、PAHs理化性质、菌根真菌以及表面活性剂等。植物-表面活性剂结合的根际修复技术、PAHs胁迫下根际的动态调节过程、运用分子生物学技术并结合植物根分泌物的特异性筛选高效修复植物以及植物富集的PAHs代谢产物进行跟踪与风险评价将成为未来研究的主流。  相似文献   

10.
利用生物表面活性鼠李糖脂(RL)洗脱土壤,再通过紫外光预照射与生物降解协同去除洗脱液中的PCBs的组合方法对多氯联苯(PCBs)污染土壤进行修复,旨在研究RL在修复PCBs污染土壤中的作用及其机理。结果表明,RL对PCBs的洗脱具有显著的促进作用,PCBs的总洗脱率与RL的质量浓度呈正相关。当洗脱液中加入2 000 mg.L-1的RL,在3次批洗脱后,人工污染土样和陈化土样的PCBs总洗脱率分别达到了90.1%和47.1%。PCBs降解菌P.LB400在以RL或联苯为碳源的驯化培养基中均能够快速生长。当土壤洗脱液中的PCBs被P.LB400的生长细胞菌液降解时,RL对PCBs的生物降解具有显著的促进作用;而在P.LB400的休眠细胞降解体系中,RL对PCBs的生物降解有一定的抑制作用。紫外光预照射对土壤洗脱液中PCBs的生物降解有一定的促进作用。紫外光预照射和生物降解的耦合有利于提高PCBs的降解速率。  相似文献   

11.
土壤多环芳烃(PAHs)的污染日益受到关注,PAHs是垃圾渗滤液中的主要有害成分之一.以苏北某市城郊结合部露天垃圾堆放场为对象,采用高效液相色谱法分析周边农田土壤中16种PAHs的含量特征及分布规律.结果表明,垃圾场周边农田土壤PAHs含量总体表现为随距垃圾堆体的距离增大而降低的趋势.土壤中PAHs总量(平均值为1 208.5μg·kg-1)明显高于未污染土壤(509.25μg·kg-1),其中显著提高了土壤中难降解、难挥发的4环芳烃的含量,按照欧洲农业土壤PAHs含量与分布标准,达到中等或中等以上PAHs污染水平,说明垃圾堆填场周边农田土壤存在PAHs的污染风险.  相似文献   

12.
我国表层土壤多环芳烃(PAHs)污染状况及来源浅析   总被引:1,自引:0,他引:1  
统计了2004—2007年间公开发表文献中我国表层(0~30 cm)土壤中美国环保署规定的16种优先控制PAHs含量调查数据,总计约41项研究,包括34个市(地)区的2 353个样点,以研究区域的地理位置划分为东北地区、京津及周围地区、长三角地区、珠三角地区和中西南地区5大区域。从全国范围看,我国浅层土壤中PAHs总量范围为ND(未检出)~27 580.9μg·kg~(-1),平均值为1 462.55μg·kg~(-1);7种致癌PAHs含量范围为ND~3 657.67μg·kg~(-1),平均值为636.64μg·kg~(-1),约占PAHs总量的44%。全国2~3环PAHs、4环PAHs和≥5环PAHs所占比例相当。区域间PAHs含量差异较大,处于北方的东北地区、京津及周围地区以及处于南北过渡区的长三角地区表层土壤中PAHs类型主要为4环和≥5环PAHs,代表性单体PAH也多为致癌PAH,处于南方的珠三角地区和中西南地区表层土壤中PAHs主要类型包括2~3环PAHs,代表性单体PAH较少为致癌PAH。利用特征化合物比例法〔Ant/178、Baa/228、Ilp/(Ilp+Bpe)和Fla/(Fla+Pyr)〕对PAHs来源进行分析,结果表明我国表层土壤中PAHs来源以草、木材和煤燃烧为主,汽车尾气排放及石油源也占相当比例;Ilp/(Ilp+Bpe)与Fla/(Fla+Pyr)比值分析表明,京津及周围地区表层土壤中PAHs来源绝大部分以草、木和煤燃烧为主,而长三角和珠三角地区PAHs来源以汽车尾气排放所占比例较大。从PAHs总量来看,我国有23%的土壤未受PAHs污染,轻微污染土壤占31%,污染土壤占8%,严重污染土壤占38%;根据Bap指标进行的评价结果表明,我国有20%的土壤受到污染。2种评估结果均表明北方受污染土壤样点比例要明显高于南方。  相似文献   

13.
通过温室盆栽试验,研究接种土著与外源丛枝菌根(AM)真菌对紫花苜蓿与黑麦草修复多环芳烃(PAHs)污染土壤的影响.结果表明,接种外源AM真菌--苏格兰球囊霉(Glomus caledonium)36号能够显著提高紫花苜蓿和黑麦草的AM真菌侵染率并促进植物生长,而接种土著菌剂或土著菌剂与36号菌剂双接种对AM真菌侵染和植物生长无促进作用,甚至降低了黑麦草苗期的AM真菌侵染率.种植紫花苜蓿和黑麦草促进了土壤中PAHs的降解,这2种植物接种36号菌剂的处理60天时土壤PAHs降解率分别达42.3%和41.1%,说明36号菌剂可以显著提高植物修复效率,而接种土著菌剂对修复作用无显著影响,土著菌剂与36号菌剂双接种对紫花苜蓿的修复效果也无显著影响,但60天时显著提高黑麦草的修复效率.土壤中PAHs降解率与植物根系的AM真菌侵染率呈显著正相关关系(P<0.05),表明AM真菌侵染可以提高紫花苜蓿与黑麦草对PAHs污染土壤的修复效率.  相似文献   

14.
采用盆栽实验,研究了过硫酸钠(Na_2S_2O_8)和过氧化氢(H_2O_2)两种氧化剂分别与纳米Fe粉和硫酸亚铁(FeSO_4)两种活化剂结合,以及加入腐殖酸(HA),对多环芳烃(PAHs)的去除,分析了对土壤和菠菜中溶剂可提取态PAHs以及土壤中不同结合态PAHs含量和组成的影响,并分析了波菜中PAHs的毒性当量浓度(BaP_(eq)).结果表明,经过7周修复,对于土壤中溶剂可提取态PAHs,氧化剂剂量为0.2 g·kg~(-1)时,H_2O_2的氧化效果优于Na_2S_2O_8;活化剂剂量为0.448 g·kg~(-1)时,纳米Fe粉的活化效果优于FeSO_4;加入2 g·kg~(-1)HA后PAHs含量有所降低,去除率升高.H_2O_2、纳米Fe粉和HA联合处理后土壤和菠菜中溶剂可提取态PAHs含量均最低,其在土壤中的去除率和菠菜中的减少率均最高,其中土壤中溶剂可提取态PAHs的去除率为36.8%,在菠菜地上部和地下部的减少率分别为45.3%、36.4%.土壤去除率和菠菜减少率中,2环和3环的PAHs高于4环、5环和6环.对于结合态PAHs,经过H_2O_2、纳米Fe粉和HA联合处理后土壤中不同结合态PAHs平均去除率最高,达44.5%.化学处理后,各处理对菠菜的生物量没有影响.H_2O_2、纳米Fe粉和HA联合处理后,菠菜地上部总BaP_(eq)最低.  相似文献   

15.
选用紫茉莉(Mirabilis jalapa L.)与孔雀草(Tagetes patula L.)两种植物与对土霉素有良好降解效果的细菌紫金牛叶杆菌(Phyllobacterium-myrsinacearum)和真菌胶红酵母(Rhodotorula mucilaginosa)的混合菌液,对土霉素、镉复合污染土壤进行联合修复。模拟受不同浓度镉、土霉素污染的土壤,在温室进行90 d盆栽实验,通过其修复效果,探讨植物-微生物联合修复土霉素、镉复合污染土壤的可行性。实验结果表明,紫茉莉和孔雀草对镉均表现出良好耐性,孔雀草、紫茉莉生物量都随土壤中土霉素含量增加而下降,土霉素抑制植物对镉的富集;土霉素降解菌有利于提高植物生物量,促进孔雀草、紫茉莉对镉吸收并提高紫茉莉对镉的富集系数。当土霉素质量分数为5 mg·kg-1时,土霉素降解率最差为30.8%(9号处理),降解效果最好为70.6%(22号处理)。当土霉素质量分数为30 mg·kg-1时,土霉素降解率最差为17.2%(11号处理);土霉素降解率最高为59.3%(24号处理)。综合比较,孔雀草无论在镉富集能力还是土霉素降解效果上均优于紫茉莉。  相似文献   

16.
辣椒中多环芳烃的累积特征及健康风险评估   总被引:2,自引:0,他引:2  
采集多环芳烃(PAHs)污染来源和程度不同的3种土壤,并制备2种柴油污染土壤,采用盆栽试验方法种植辣椒,种植期间收集大气沉降颗粒物,检测了土壤、辣椒各部位和大气沉降颗粒物中美国环保署优先控制的16种PAHs含量和组成,分析了大气沉降颗粒物中PAHs对辣椒地上部PAHs的贡献率,阐明辣椒中PAHs累积的主要途径,并对不同年龄的人群摄食辣椒果实的健康风险进行了评估.结果表明,辣椒根、茎、叶和果中PAHs的含量范围为205.3—1087.8、123.2—791.8、88.3—599.5、57.2—368.1 ng·g~(-1),根中的含量最高,果实中的含量最低.辣椒各部位中PAHs总含量均与土壤中的含量呈显著正相关关系(P0.05).辣椒中各环数PAHs质量分数大小顺序为3环4环5—6环2环;其中3环PAHs的质量分数由根部到果实呈递增的趋势,4—6环PAHs质量分数从根部到果实呈减小的趋势.总体上辣椒各部位中均呈现出低环PAHs的富集系数高于高环PAHs的规律.大气沉降颗粒物中PAHs对辣椒植株中PAHs的贡献率不超过0.3%,影响极小,因此土壤吸收是辣椒中PAHs累积的主要途径.柴油污染的2种土壤种植辣椒中的PAHs总毒性当量含量高于其他土壤.成人摄食中、重度和柴油污染土壤种植的辣椒果实以及老年人摄食柴油污染土壤种植的辣椒果实存在潜在致癌风险,儿童、青少年摄食不存在潜在致癌风险.  相似文献   

17.
土壤多环芳烃(PAHs)的污染已经成为了全球性的热点问题,微生物-植物联合修复技术是解决土壤有机污染的一种低耗高效的新型修复技术。以往作为目标污染物,绿豆根瘤菌(Rhizobium leguminosarum),紫花苜宿根瘤菌(Rhizobium meliloti)为供试微生物,选用绿豆(Vigna radiata L.)、紫花苜蓿(Medicago sativa L.),黑麦草(Lolium perenne L.)和花生(Arachis hypogaea L.)作为修复植物。采用盆栽实验,研究在100 mg·kg-1污染条件下,接种根瘤菌对植物修复法污染土壤效果的影响。结果表明:培养60d后,4种植物均提高了芘污染土壤的pH,并提高了土壤脱氢酶的活性,其中种植绿豆的效果最好,其次为花生。此外,4种植物均提高了土壤中芘的去除率,提高幅度依次为绿豆(33.70%)花生(21.63%)黑麦草(10.55%)苜蓿(7.72%)。接种根瘤菌后发现,绿豆和花生根瘤数显著高于对照组,苜蓿与根瘤菌没有结合,而黑麦草则不和根瘤菌共生。根瘤菌对土壤中pH有一定的提高作用,但效果不显著。此外,根瘤菌提高了绿豆、花生和紫花苜蓿的生物量以及绿豆和花生处理组土壤的脱氢酶活性。并提高了绿豆和花生对土壤中芘的去除率,分别为4.10%和2.02%。研究表明:种植绿豆对土壤芘的去除率最高(94.63%),根瘤菌能与其根系结合良好,强化了绿豆修复芘污染土壤的能力,结果可为微生物-植物修复芘污染土壤提供新的参考。  相似文献   

18.
为快速有效地测定石油污染土壤中功能性微生物的活性变化,分别以石油烃、正十六烷烃、多环芳烃为自定义碳源,应用Biolog法研究油污土壤生物修复过程中石油烃、烷烃、多环芳烃降解菌的代谢活性.结果显示,向油污土壤中投加混合降解菌群进行生物强化修复处理,可以有效去除土壤中的石油烃,修复13周土壤中石油烃去除率达到42.3%;生物刺激和自然修复对土壤石油烃的去除率分别为28.3%和20.5%.Biolog测定结果表明,生物强化法修复初期的土壤微生物群落对石油烃、烷烃两种碳源的代谢能力较强,而生物刺激法修复后期的土壤微生物群落对烷烃有较强的代谢能力;不同处理的土壤微生物群落比较偏好、利用率较高的碳源是石油烃,其次是烷烃,而对多环芳烃几乎不利用;土壤中石油烃、烷烃降解菌的活性越大,土壤微生物对石油烃的去除效率越高.上述研究结果说明,通过利用Biolog法测定土壤微生物活性变化可有效指示土壤中石油烃的去除效果.  相似文献   

19.
温志豪  曾路生  柴超  吴娟 《环境化学》2019,38(10):2356-2365
本文建立了一种利用生物质炭并结合过氧化氢对火电厂多环芳烃(PAHs)污染土壤的修复方法.采集诸城火电厂多环芳烃污染土壤为研究对象,采用盆栽试验的方法,研究了不同梯度生物质炭与过氧化氢配合施用修复多环芳烃污染土壤,对小白菜生长指标及土壤多环芳烃含量的变化.结果表明,合理施用生物质炭配施过氧化氢能促进小白菜生长,有效降低土壤和小白菜中多环芳烃含量.与T1(不施生物质炭)对比,生物炭处理的小白菜生物量增加8%—15%,叶绿素SPAD值增加25%—50%,荧光参数和光谱反射率有一定提高,小白菜和土壤多环芳烃含量显著减少.同时,使污染酸化土壤pH值提高了0.2—0.6个单位,土壤有机质含量提高了9.5%—45.6%,碱解氮、速效磷与速效钾等养分有一定量的增加.其中,T7(0.5‰H_2O_2+2‰生物质炭)处理修复效果最好,供试蔬菜和土壤中多环芳烃去除率分别达到了69.6%和58.8%.其次是T3(2‰生物质炭)处理,供试蔬菜和土壤中多环芳烃去除率分别达到了42.9%和54.6%,也具有较好的去除效果.因此,可推荐在修复实践中参考应用.  相似文献   

20.
运用双相(水-硅油)系统可进行有机物降解菌的筛选.本实验用此法获得了多环芳烃(PAHs)的降解菌,降解菌对PAHs有较好的降解作用.堆肥法处理PAHs中接入筛选到的降解菌可以大大加强降解效果.堆肥过程中堆温升高很快,对一些PAHs如荧蒽、芘、苯并[a]芘等可以彻底清除,对更多环的PAHs也可降到很低的浓度.图1表3参4  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号