首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method is described for the retrieval of fractional cover of large woody plants (shrubs) at the landscape scale using moderate resolution multi-angle remote sensing data from the Multiangle Imaging SpectroRadiometer (MISR) and a hybrid geometric-optical (GO) canopy reflectance model. Remote sensing from space is the only feasible method for regularly mapping woody shrub cover over large areas, an important application because extensive woody shrub encroachment into former grasslands has been seen in arid and semi-arid grasslands around the world during the last 150 years. The major difficulty in applying GO models in desert grasslands is the spatially dynamic nature of the combined soil and understory background reflectance: the background is important and cannot be modeled as either a Lambertian scatterer or by using a fixed bidirectional reflectance distribution function (BRDF). Candidate predictors of the background BRDF at the Sun-target-MISR angular sampling configurations included the volume scattering kernel weight from a Li-Ross BRDF model; diffuse brightness (ρ0) from the Modified Rahman-Pinty-Verstraete (MRPV) BRDF model; other Li-Ross kernel weights (isotropic, geometric); and MISR near-nadir bidirectional reflectance factors (BRFs) in the blue, green, and near infra-red bands. The best method was multiple regression on the weights of a kernel-driven model and MISR nadir camera blue, green, and near infra-red bidirectional reflectance factors. The results of forward modeling BRFs for a 5.25 km2 area in the USDA, ARS Jornada Experimental Range using the Simple Geometric Model (SGM) with this background showed good agreement with the MISR data in both shape and magnitude, with only minor spatial discrepancies. The simulations were shown to be accurate in terms of both absolute value and reflectance anisotropy over all 9 MISR views and for a wide range of canopy configurations (r2 = 0.78, RMSE = 0.013, N = 3969). Inversion of the SGM allowed estimation of fractional shrub cover with a root mean square error (RMSE) of 0.03 but a relatively weak correlation (r2 = 0.19) with the reference data (shrub cover estimated from high resolution IKONOS panchromatic imagery). The map of retrieved fractional shrub cover was an approximate spatial match to the reference map. Deviations reflect the first-order approximation of the understory BRDF in the MISR viewing plane; errors in the shrub statistics; and the 12 month lag between the two data sets.  相似文献   

2.
Land surface albedo is one of the key parameters in the radiation budget, the hydrological cycle and climate modeling studies. It is now widely understood that large errors may occur in the estimation of surface albedo without taking into consideration the anisotropy reflectance effect, which is a general feature of the earth surface. Two major anisotropic correction methods exist for the retrieval of land surface albedo under clear sky conditions. One method involves linearly converting from top of the atmosphere (TOA) albedo to surface albedo, and another is based on the inversion of the Bidirectional Reflectance Distribution Function (BRDF) model of the surface. In the present study, a new approach that utilizes an empirical model for estimating surface albedo has been proposed for snow free land surfaces under clear sky conditions. We analyzed the bidirectional reflectance data set with numerous samples representing various land cover types, which derived from POLDER/ADEOS-1 multi-angle imagery data and distributed by MEDIAS-France. Through the analysis, an empirical relation between bidirectional reflectance and albedo was established and has been discussed in detail. The proposed model can be used for direct estimation of surface albedo from a single BRF observation when the sun-target-sensor geometry is known. No BRDF model inversion scheme is necessary. The present model has no or weak dependence on the existing land surface classifications, and is insensitive to wavelength. The theoretical absolute accuracy of the estimated albedo is approximately 0.010 for visible (0.4-0.7 μm), 0.023 for near infrared (0.7-3.0 μm) and 0.016 for shortwave (0.2-3.0 μm), respectively. Albedo consistency with viewing geometry has been verified, resulting in good agreement for albedo estimated from various viewing directions. Validation of the satellite estimated albedo derived by the proposed method, using field observations were also presented and results show it can give reasonably accurate estimation. The proposed method is expected to be a suitable candidate for practical applications of albedo estimation for sensors that do not perform multi-angle observations.  相似文献   

3.
Surface albedo is one of the driving factors in surface radiant energy balance and surface-atmosphere interaction.It is widely used in surface energy balance, medium and long-term weather forecasting and global change research.This study aims to validate the surface albedo retrieved from FY-3C MERSI. This paper selected four regions in Africa and North America as study areas to validate the retrieved albedo from the reflectance data and angle data of FY-3C MERSI at 250 m resolution in 2014. The semi-empirical kernel-driven BRDF(bidirectional reflectance distribution function) model RossThick-LiSparseR and least squares fitting method were used to calculate the parameter of BRDF. Then four narrow-band black-sky albedos and four narrow-band white-sky albedos can be obtained by angle integration. Finally, the cross-validation of FY-3C surface narrow-band albedo products with MODIS albedo products (MCD43A3) was carried out. The results show that theRoot Mean Square Error(RMSE) between the FY-3C narrow-band albedo and the corresponding MODIS narrow-band albedo is in the range of 0.01 ~ 0.04, and the Mean Bias (MBIAS) is 0.09. FY-3C narrow-band albedo has good consistency with the corresponding MODIS narrow-band albedo in the visible and near-infrared bands. So, the methodologyof using the BRDF model to invert the surface albedo of FY-3C medium resolution imaging spectrometer data is feasible and reliable. The further improvement of the inversion accuracy of FY3C-MERSI surface albedo also depends on the improvement of basic data processing quality, including image geometric correction, calibration, and strict data quality control.  相似文献   

4.
地表反照率数据对地表能量平衡和全球变化研究具有重要意义。基于2014年FY-3C卫星250 m分辨率的反射率数据和角度数据,选取非洲及北美洲的4个区域作为研究区,采用RossThick-LiSparseR模型作为BRDF(Bidirectional Reflectance Distribution Function)核模型反演了地表窄波段反照率,得到250 m分辨率的4个窄波段黑空、白空反照率。将反演得到的FY-3C地表窄波反照率产品与MODIS反照率产品(MCD43A3)数据进行了交叉验证,结果表明:FY-3C窄波段反照率与对应MODIS窄波段反照率对比的均方根误差在0.01~0.04,平均偏差(MBIAS)为0.09,FY-3C窄波段反照率与对应的MODIS窄波段反照率在可见光波段、近红外波段有较好的一致性。本研究提升了国产风云极轨卫星的应用范围,可为FY-3C地表反照率业务化产品提供算法支撑。  相似文献   

5.
In this study retrievals of forest canopy height were obtained through adjustment of a simple geometric-optical (GO) model against red band surface bidirectional reflectance estimates from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped to a 250 m grid. The soil-understory background contribution was partly isolated prior to inversion using regression relationships with the isotropic, geometric, and volume scattering kernel weights of a Li-Ross kernel-driven bidirectional reflectance distribution function (BRDF) model. The height retrievals were assessed using discrete return lidar data acquired over sites in Colorado as part of the Cold Land Processes Experiment (CLPX) and used with fractional crown cover retrievals to obtain aboveground woody biomass estimates. For all model runs with reasonable backgrounds and initial b/r (vertical to horizontal crown radii) values < 2.0, root mean square error (RMSE) distributions were centered between 2.5 and 3.7 m while R2 distributions were centered between 0.4 and 0.7. The MISR/GO aboveground biomass estimates predicted via regression on fractional cover and mean canopy height for the CLPX sites showed good agreement with U.S. Forest Service Interior West map data (adjusted R2 = 0.84). The implication is that multiangle sensors such as MISR can provide spatially contiguous retrievals of forest canopy height, cover, and aboveground woody biomass that are potentially useful in mapping distributions of aboveground carbon stocks, tracking disturbance, and in initializing, constraining, and validating ecosystem models. This is important because the MISR record is spatially comprehensive and extends back to the year 2000 and the launch of the NASA Earth Observing System (EOS) Terra satellite; it might thus provide a ~ 10-year baseline record that would enhance exploitation of data from the NASA Deformation, Ecosystem Structure and Dynamics of Ice (DESDynI) mission, as well as furthering realization of synergies with active instruments.  相似文献   

6.
A rapid canopy reflectance model inversion experiment was performed using multi-angle reflectance data from the NASA Multi-angle Imaging Spectro-Radiometer (MISR) on the Earth Observing System Terra satellite, with the goal of obtaining measures of forest fractional crown cover, mean canopy height, and aboveground woody biomass for large parts of south-eastern Arizona and southern New Mexico (> 200,000 km2). MISR red band bidirectional reflectance estimates in nine views mapped to a 250 m grid were used to adjust the Simple Geometric-optical Model (SGM). The soil-understory background signal was partly decoupled a priori by developing regression relationships with the nadir camera blue, green, and near-infrared reflectance data and the isotropic, geometric, and volume scattering kernel weights of the LiSparse–RossThin kernel-driven bidirectional reflectance distribution function (BRDF) model adjusted against MISR red band data. The SGM's mean crown radius and crown shape parameters were adjusted using the Praxis optimization algorithm, allowing retrieval of fractional crown cover and mean canopy height, and estimation of aboveground woody biomass by linear rescaling of the dot product of cover and height. Retrieved distributions of crown cover, mean canopy height, and aboveground woody biomass for forested areas showed good matches with maps from the United States Department of Agriculture (USDA) Forest Service, with R2 values of 0.78, 0.69, and 0.81, and absolute mean errors of 0.10, 2.2 m, and 4.5 tons acre- 1 (10.1 Mg ha- 1), respectively, after filtering for high root mean square error (RMSE) on model fitting, the effects of topographic shading, and the removal of a small number of outliers. This is the first use of data from the MISR instrument to produce maps of crown cover, canopy height, and woody biomass over a large area by seeking to exploit the structural effects of canopies reflected in the observed anisotropy patterns in these explicitly multiangle data.  相似文献   

7.
Red band bidirectional reflectance factor data from the NASA MODerate resolution Imaging Spectroradiometer (MODIS) acquired over the southwestern United States were interpreted through a simple geometric-optical (GO) canopy reflectance model to provide maps of fractional crown cover (dimensionless), mean canopy height (m), and aboveground woody biomass (Mg ha− 1) on a 250 m grid. Model adjustment was performed after dynamic injection of a background contribution predicted via the kernel weights of a bidirectional reflectance distribution function (BRDF) model. Accuracy was assessed with respect to similar maps obtained with data from the NASA Multiangle Imaging Spectroradiometer (MISR) and to contemporaneous US Forest Service (USFS) maps based partly on Forest Inventory and Analysis (FIA) data. MODIS and MISR retrievals of forest fractional cover and mean height both showed compatibility with the USFS maps, with MODIS mean absolute errors (MAE) of 0.09 and 8.4 m respectively, compared with MISR MAE of 0.10 and 2.2 m, respectively. The respective MAE for aboveground woody biomass was ~ 10 Mg ha− 1, the same as that from MISR, although the MODIS retrievals showed a much weaker correlation, noting that these statistics do not represent evaluation with respect to ground survey data. Good height retrieval accuracies with respect to averages from high resolution discrete return lidar data and matches between mean crown aspect ratio and mean crown radius maps and known vegetation type distributions both support the contention that the GO model results are not spurious when adjusted against MISR bidirectional reflectance factor data. These results highlight an alternative to empirical methods for the exploitation of moderate resolution remote sensing data in the mapping of woody plant canopies and assessment of woody biomass loss and recovery from disturbance in the southwestern United States and in parts of the world where similar environmental conditions prevail.  相似文献   

8.
基于ART模型的MODIS积雪反照率反演研究   总被引:1,自引:0,他引:1  
积雪反照率是研究局地或全球的能量收支平衡和气候变化中的重要参数,遥感反演为积雪反照率的获取提供了便利的手段。积雪反照率大小主要取决于积雪的自身物理属性(雪粒径、形状和污染物等因子)以及天气状况,遥感反演反照率大多基于双向反射模型(BRDF),积雪BRDF模型常使用积雪辐射传输模型获得。采用考虑了雪粒径、粒子形状以及污染物影响的渐进辐射传输理论(ART)模型,建立了MODIS积雪反照率反演算法,得到了MODIS 8d合成积雪反照率产品。将此算法应用于具有均一积雪地表的格陵兰岛地区,并使用GC-Net实测数据进行了验证,反演的总均方根误差(RMSE)为0.018,相关系数(r)为0.83,结果表明考虑了积雪特性的ART模型能够较好地反演积雪反照率,而且反演需要的参数较少。  相似文献   

9.
A semi-physical fusion approach that uses the MODIS BRDF/Albedo land surface characterization product and Landsat ETM+ data to predict ETM+ reflectance on the same, an antecedent, or subsequent date is presented. The method may be used for ETM+ cloud/cloud shadow and SLC-off gap filling and for relative radiometric normalization. It is demonstrated over three study sites, one in Africa and two in the U.S. (Oregon and Idaho) that were selected to encompass a range of land cover land use types and temporal variations in solar illumination, land cover, land use, and phenology. Specifically, the 30 m ETM+ spectral reflectance is predicted for a desired date as the product of observed ETM+ reflectance and the ratio of the 500 m surface reflectance modeled using the MODIS BRDF spectral model parameters and the sun-sensor geometry on the predicted and observed Landsat dates. The difference between the predicted and observed ETM+ reflectance (prediction residual) is compared with the difference between the ETM+ reflectance observed on the two dates (temporal residual) and with respect to the MODIS BRDF model parameter quality. For all three scenes, and all but the shortest wavelength band, the mean prediction residual is smaller than the mean temporal residual, by up to a factor of three. The accuracy is typically higher at ETM+ pixel locations where the MODIS BRDF model parameters are derived using the best quality inversions. The method is most accurate for the ETM+ near-infrared (NIR) band; mean NIR prediction residuals are 9%, 12% and 14% of the mean NIR scene reflectance of the African, Oregon and Idaho sites respectively. The developed fusion approach may be applied to any high spatial resolution satellite data, does not require any tuning parameters and so may be automated, is applied on a per-pixel basis and is unaffected by the presence of missing or contaminated neighboring Landsat pixels, accommodates for temporal variations due to surface changes (e.g., phenological, land cover/land use variations) observable at the 500 m MODIS BRDF/Albedo product resolution, and allows for future improvements through BRDF model refinement and error assessment.  相似文献   

10.
The land surface albedo is a key parameter influencing the climate near the ground. Therefore, it must be determined with sufficient accuracy. In this paper, a statistical inversion method is presented in support of the application of kernel-based Bi-directional Reflectance Distribution Function (BRDF) models for the calculation of the surface albedo. The method provides the best linear unbiased estimations (BLUE) of the BRDF model coefficients for an arbitrary number of available angular measurements. When the number of measurements exceeds the number of the estimated coefficients, the QR decomposition method is proposed to improve the ill-conditional features of the inversion matrix. In other cases, the singular value decomposition (SVD) method is suggested. The proposed inversion method is innovative in that it provides confidence intervals for each of the BRDF model coefficients with a prescribed significance expressed by a probability level. Five candidate kernel-driven BRDF models were used in the present simulation study: Li-Sparse, Roujean, Li-Sparse-Wanner, Li-Dense and Walthall. A ground-based reflectance measurement data set including 11 surface types forms the background for the inversion experiments. The results show a strong dependence on the solar zenith angle (SZA) and on the land cover type (LCT) for all candidate models. Owing to this, none model could be recommend in a general manner. The Li-Sparse and the Li-Sparse-Wanner models performed the best for the grass and wheat LCT, while the Roujean model appeared as a favorite for the pine and deciduous forests. The implementation of the confidence interval technique shows that the BRDF model coefficients can be retrieved with an uncertainty of 20-30%, and somewhat greater in the case of forest. The measured angular reflectance curves lie, as a rule, within the uncertainty bands related to the 5% significance level (95% probability). The corresponding albedo estimates can be characterized by an absolute uncertainty of 1-2% in the visible band and 5-10% in the near infrared band, or by 10-30% in relative terms. The reflectance measurements at low SZA values are preferable for BRDF model inversion for the grassland and crop, while medium range of SZA seems to provide more information on forest features. For the majority of LCT, the results of BRDF model inversion seem to be less reliable when considering multi-angular measurements for various SZA than for a single SZA.  相似文献   

11.
A method is presented for bi‐directional reflectance distribution function (BRDF) parametrization for topographic correction and surface reflectance estimation from Landsat Thematic Mapper (TM) over rugged terrain. Following this reflectance, albedo is calculated accurately. BRDF is parametrized using a land‐cover map and Landsat TM to build a BRDF factor to remove the variation of relative solar incident angle and relative sensor viewing angle per pixel. Based on the BRDF factor and radiative transfer model, solar direct radiance correction, sky diffuse radiance and adjacent terrain reflected radiance correction were introduced into the atmospheric‐topographic correction method. Solar direct radiance, sky diffuse radiance and adjacent terrain reflected radiance, as well as atmospheric transmittance and path radiance, are analysed in detail and calculated per pixel using a look‐up table (LUT) with a digital elevation model (DEM). The method is applied to Landsat TM imagery that covers a rugged area in Jiangxi province, China. Results show that atmospheric and topographic correction based on BRDF gives better surface reflectance compared with sole atmospheric correction and two other useful atmospheric‐topographic correction methods. Finally, surface albedo is calculated based on this topography‐corrected reflectance and shows a reasonable accuracy in albedo estimation.  相似文献   

12.
Most studies on the reflectance properties of the Earth's surface are addressed estimating the bidirectional reflectance distribution function (BRDF) of high spatial resolution and high spectral resolution satellite measurements. This article assesses the development of broadband (BB) BRDFs from radiances corresponding to large footprints classified according to the International Geosphere-Biosphere Programme (IGBP) land-cover classification. Top-of-atmosphere (TOA) shortwave (SW) CERES (Clouds and the Earth's Radiant Energy System) measurements are employed to invert the bidirectional reflectance factor (BRF) Rahman–Pinty–Verstraete (RPV) model for regions identified with the same IGBP type. The inversion of this non-linear parametric model is optimized to improve the computation efficiency and merged into a radiative transfer model to correct the surface radiances for the atmospheric effect. Analysis of the nature of the reflectance field simulated for several regions selected for every IGBP type determines whether the creation of general BRF models for surfaces defined by the same IGBP land cover is feasible. According to the results gathered in this study, the BB BRDFs for regions classified by the IGBP classification show values for the coefficient of variation (CV) between 3.5% and 44.1%. Consequently, the high differences achieved in the reflectance fields discourage the creation of BRDFs based on the IGBP land types.  相似文献   

13.
Several investigations indicate that the Bidirectional Reflectance Distribution Function (BRDF) contains information that can be used to complement spectral information for improved land cover classification accuracies. Prior studies on the addition of BRDF information to improve land cover classifications have been conducted primarily at local or regional scales. Thus, the potential benefits of adding BRDF information to improve global to continental scale land cover classification have not yet been explored. Here we examine the impact of multidirectional global scale data from the first Polarization and Directionality of Earth Reflectances (POLDER) spacecraft instrument flown on the Advanced Earth Observing Satellite (ADEOS-1) platform on overall classification accuracy and per-class accuracies for 15 land cover categories specified by the International Geosphere Biosphere Programme (IGBP).

A set of 36,648 global training pixels (7 × 6 km spatial resolution) was used with a decision tree classifier to evaluate the performance of classifying POLDER data with and without the inclusion of BRDF information. BRDF ‘metrics’ for the eight-month POLDER on ADEOS-1 archive (10/1996–06/1997) were developed that describe the temporal evolution of the BRDF as captured by a semi-empirical BRDF model. The concept of BRDF ‘feature space’ is introduced and used to explore and exploit the bidirectional information content. The C5.0 decision tree classifier was applied with a boosting option, with the temporal metrics for spectral albedo as input for a first test, and with spectral albedo and BRDF metrics for a second test. Results were evaluated against 20 random subsets of the training data.

Examination of the BRDF feature space indicates that coarse scale BRDF coefficients from POLDER provide information on land cover that is different from the spectral and temporal information of the imagery. The contribution of BRDF information to reducing classification errors is also demonstrated: the addition of BRDF metrics reduces the mean, overall classification error rates by 3.15% (from 18.1% to 14.95% error) with larger improvements for producer's accuracies of individual classes such as Grasslands (+ 8.71%), Urban areas (+ 8.02%), and Wetlands (+ 7.82%). User's accuracies for the Urban (+ 7.42%) and Evergreen Broadleaf Forest (+ 6.70%) classes are also increased. The methodology and results are widely applicable to current multidirectional satellite data from the Multi-angle Imaging Spectroradiometer (MISR), and to the next generation of POLDER-like multi-directional instruments.  相似文献   


14.
This work is devoted to a presentation of the ECOCLIMAP-II database for Western Africa, which is an upgrade for this region of the former initiative, ECOCLIMAP-I, implemented at global scale. ECOCLIMAP-II is a dual database at 1-km resolution that comprises an ecosystem classification and a coherent set of land surface parameters. This new physiographic information (e.g. leaf area index, fractional vegetation cover, albedo and land cover classification), was especially developed in the framework of the African Monsoon Multidisciplinary Analysis (AMMA) programme in order to support the modelling of land-atmosphere interactions, which stresses the importance of the present study. Criteria for coherence between prevalent land cover classifications and the analysis of time series of the satellite leaf area index (LAI) between 2000 and 2007 constitute the analysis tools for setting up ECOCLIMAP-II. The LAI and inferred fraction of vegetation cover are spatially distributed per land cover unit. The fraction of vegetation cover is handled to split the land surface albedo into vegetation and bare soil albedo components, as is required for a large number of applications. The new ECOCLIMAP-II land cover product is improved with regard to the spatial coherence compared to former version. The reliability of the physiographic details is also confirmed through verification with land cover products at higher resolution.  相似文献   

15.
In this paper, we consider the direct solution of the kernel-based bidirectional reflectance distribution function (BRDF) models for the retrieval of land surface albedos. This is an ill-posed problem due to nonuniqueness of the solution and the instability induced by error/noise and small singular values of the linearized system or the linear BRDF model. A robust inversion algorithm is critical for the BRDF/albedo retrieval from the limited number of satellite observations. We propose a promising algorithm for resolving this kind of ill-posed problem encountered in BRDF model inversion using remote sensing data.New techniques for robust estimation of BRDF model parameters are needed to cope with the scarcity of the number of observations. We are reminded by Cornelius Lanczos' dictum: “Lack of information cannot be remedied by mathematical trickery.” Thus identifying a priori information or appropriate constraints, and the embedding of the information or constraints into the regularization algorithm, are pivotal elements of a retrieval algorithm. We develop a regularization method, which is called the numerically truncated singular value decomposition (NTSVD). The method is based on the spectrum of the linear driven kernel, and the a priori information/constraint is based on the minimization of the l2 norm of the parameters vector. The regularization algorithm is tested using field data as well as satellite data. Numerical experiments with a subset of measurements for each site demonstrate the robustness of the algorithm.  相似文献   

16.
The goal of this study is to demonstrate the asset in using a Kalman filter to improve the spatial coherence and time consistency of surface Bidirectional Reflectance Distribution Function (BRDF) and albedo retrievals from moderate resolution sensor data sets. For this purpose, we use a simple surface model describing BRDF seasonal evolution for the land cover classes of the ECOCLIMAP database. The application of temporal composition windows used so far for BRDF retrieval is limited in regions characterized by a high frequency of cloud coverage, which induces a lot of gaps in the temporal series. Instead, the present method ensures a continuous production of surface BRDF parameters thanks to the Kalman filter recursive data processing. An application of the method is performed with SPOT/VEGETATION data over the western Africa equatorial region for the year 2003. Compared to presently available products from VEGETATION and MODIS instruments, this new approach allows to fill the gaps and improves the retrieved parameters time consistency. Another interesting possibility of the Kalman filter is the production of surface biophysical variables in quasi-real-time for applications that require a frequent update of the surface parameters.  相似文献   

17.
Comparative analysis of urban reflectance and surface temperature   总被引:1,自引:0,他引:1  
Urban environmental conditions are strongly dependent on the biophysical properties and radiant thermal field of the land cover elements in the urban mosaic. Observations of urban reflectance and surface temperature provide valuable constraints on the physical properties that are determinants of mass and energy fluxes in the urban environment. Consistencies in the covariation of surface temperature with reflectance properties can be parameterized to represent characteristics of the surface energy flux associated with different land covers and physical conditions. Linear mixture models can accurately represent Landsat ETM+ reflectances as fractions of generic spectral endmembers that correspond to land surface materials with distinct physical properties. Modeling heterogeneous land cover as mixtures of rock and/or soil Substrate, Vegetation and non-reflective Dark surface (SVD) generic endmembers makes it possible to quantify the dependence of aggregate surface temperature on the relative abundance of each physical component of the land cover, thereby distinguishing the effects of vegetation abundance, soil exposure, albedo and shadowing. Comparing these covariations in a wide variety of urban settings and physical environments provides a more robust indication of the global variability in these parameter spaces than could be inferred from a single study area. A comparative analysis of 24 urban areas and their non-urban peripheries illustrates the variability in the urban thermal fields and its dependence on biophysical land surface components. Contrary to expectation, moderate resolution intra-urban variations in surface temperature are generally as large as regional surface heat island signatures in these urban areas. Many of the non-temperate urban areas did not have surface heat island signatures at all. However, the multivariate distributions of surface temperature and generic endmember fractions reveal consistent patterns of thermal fraction covariation resulting from land cover characteristics. The Thermal-Vegetation (TV) fraction space illustrates the considerable variability in the well-known inverse correlation between surface temperature and vegetation fraction at moderate (< 100 m) spatial resolutions. The Thermal-Substrate (TS) fraction space reveals energetic thresholds where competing effects of albedo, illumination and soil moisture determine the covariation of maximum and minimum temperature with illuminated substrate fraction. The dark surface endmember fraction represents a fundamental ambiguity in the radiance signal because it can correspond to either absorptive (e.g. low albedo asphalt), transmissive (e.g. deep clear water) or shadowed (e.g. tree canopy shadow) surfaces. However, in areas where dark surface composition can be inferred from spatial context, the different responses of these surfaces may still allow them to be distinguished in the thermal fraction space.  相似文献   

18.
Land surface albedo is dependent on atmospheric state and hence is difficult to validate. Over the UK persistent cloud cover and land cover heterogeneity at moderate (km-scale) spatial resolution can also complicate comparison of field-measured albedo with that derived from instruments such as the Moderate Resolution Imaging Spectrometer (MODIS). A practical method of comparing moderate resolution satellite-derived albedo with ground-based measurements over an agricultural site in the UK is presented. Point measurements of albedo made on the ground are scaled up to the MODIS resolution (1 km) through reflectance data obtained at a range of spatial scales. The point measurements of albedo agreed in magnitude with MODIS values over the test site to within a few per cent, despite problems such as persistent cloud cover and the difficulties of comparing measurements made during different years. Albedo values derived from airborne and field-measured data were generally lower than the corresponding satellite-derived values. This is thought to be due to assumptions made regarding the ratio of direct to diffuse illumination used when calculating albedo from reflectance. Measurements of albedo calculated for specific times fitted closely to the trajectories of temporal albedo derived from both Systeme pour l'Observation de la Terre (SPOT) Vegetation (VGT) and MODIS instruments.  相似文献   

19.
Monitoring of photosynthetic efficiency (ε) over space and time is a critical component of climate change research as it is a major determinant of the amount of carbon accumulated by terrestrial ecosystems. While the past decade has seen progress in the remote estimation of ε at the leaf, canopy and stand level using the photochemical reflectance index PRI (based on the normalized difference of reflectance at 531 and 570 nm), little is known about the temporal and spatial requirements for up-scaling PRI to landscape and global levels using satellite observations. One potential way to investigate these requirements is using automated tower-based remote sensing platforms, which observe stand level reflectance with high spatial, temporal, and spectral resolution. Prediction of ε from PRI diurnally or over a full year requires observations of canopy reflectance over multiple view and sun-angles. As a result, these observations are subject to directional reflectance effects which can be interpreted in terms of the bidirectional reflectance distribution function (BRDF) using semi-empirical kernel driven models. These semi-empirical models use a combination of physically based BRDF shapes and empirical observations to standardize multi-angular observations to a common viewing and illumination geometry. Directional reflectance effects are thereby modeled as a linear superposition of mathematical kernels, representing the bi-direction variation in reflectance from isotropic, geometric, and volumetric scattering components of the vegetation canopy. However, because variations in plant physiological conditions can also introduce bidirectional reflectance variations, we introduce an approach to separate bidirectional effects arising purely from plant physiological status from other effects by stratifying PRI observations into categories based on environmental conditions for which the expected physiological variability is low. Within each of these PRI strata, the derived physically based BRDF shapes were used to standardize multi-angular PRI measurements to a common viewing and illumination geometry. The method significantly enhanced the relationship found between PRI and ε (from r2 = 0.38 for the directionally uncorrected case to r2 = 0.82 for the directionally corrected case) from data measured continuously over the course of 1 year over an evergreen conifer forest using an automated platform. Results show that isotropic PRI scattering is highly correlated to changes in ε, while geometric scattering can be related to canopy level shading. Instrumentation and approaches such as the one demonstrated in this study may be integrated into current efforts aiming at predicting ε at global scales using satellite observations.  相似文献   

20.
Using MODIS data and the AERONET-based Surface Reflectance Validation Network (ASRVN), this work studies errors of MODIS atmospheric correction caused by the Lambertian approximation. On one hand, this approximation greatly simplifies the radiative transfer model, reduces the size of the look-up tables, and makes operational algorithm faster. On the other hand, uncompensated atmospheric scattering caused by Lambertian model systematically biases the results. For example, for a typical bowl-shaped bidirectional reflectance distribution function (BRDF), the derived reflectance is underestimated at high solar or view zenith angles, where BRDF is high, and is overestimated at low zenith angles where BRDF is low. The magnitude of biases grows with the amount of scattering in the atmosphere, i.e., at shorter wavelengths and at higher aerosol concentration. The slope of regression of Lambertian surface reflectance vs. ASRVN bidirectional reflectance factor (BRF) is about 0.85 in the red and 0.6 in the green bands. This error propagates into the MODIS BRDF/albedo algorithm, slightly reducing the magnitude of overall reflectance and anisotropy of BRDF. This results in a small negative bias of spectral surface albedo. An assessment for the GSFC (Greenbelt, USA) validation site shows the albedo reduction by 0.004 in the near infrared, 0.005 in the red, and 0.008 in the green MODIS bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号