首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Yin  R.C.  Allam  I.M.  Al-Farayedhi  A. 《Oxidation of Metals》2003,60(3-4):315-333
The carburization behavior of 310 stainless steel has been studied after cyclic exposures to carburizing gas mixtures at elevated temperatures for 500hr exposures. A thermodynamic analysis indicated that 1000°C was an approximate critical temperature, below which the environment should result in mixed oxidizing/carburizing behavior while above this temperature, reducing-carburizing behavior should occur. The experimental results agree well with the thermodynamic analysis, at 800°C in 2% CH4/H2 for 310SS which suffers both external oxidation, carburization, and internal carburization. At 1100°C in 10% CH4/H2 external carburization occurs and internal carburization becomes less pronounced. Schematics are illustrated to show corrosion mechanisms in various exposure environments.  相似文献   

2.
Hao Li 《Corrosion Science》2010,52(7):2481-186
In this investigation, Cr2O3 and MnCr2O4 were comparatively tested at 1050 °C in carbonaceous environment with varied oxygen partial pressures. MnCr2O4 exhibits much better resistance to carbonaceous attack than Cr2O3. The carburization rate of MnCr2O4 decreases sharply with increasing oxygen partial pressures. The oxygen partial pressures have less effect on the carburization resistance of Cr2O3. The increased resistance of MnCr2O4 to carburization is attributed to the dissolution of MnO into Mn-Cr-O spinel lattices with elevated oxygen partial pressures, which retards the decomposition and carburization of Mn-Cr-O spinel. The thermodynamic equations defining the carburization stability of MnCr2O4 and Cr2O3 are modified.  相似文献   

3.
The oxidation behavior of hot-pressed Al2O3–TiC–Co composites prepared from cobalt-coated powders has been studied in air in the temperature range from 200 °C to 1000 °C for 25 h. The oxidation resistance of Al2O3–TiC–Co composites increases with the increase of sintering temperature at 800 °C and 1000 °C. The oxidation surfaces were studied by XRD and SEM. The oxidation kinetics of Al2O3–TiC–Co composites follows a rate that is faster than the parabolic-rate law at 800 °C and 1000 °C. The mechanism of oxidation has been analyzed using thermodynamic and kinetic considerations.  相似文献   

4.
In future power plant technologies, oxyfuel, steels are subjected to steam rich and carbon dioxide rich combustion gases. The effect of simulated combustion gases H2O/CO2/O2 (30/69/1 mol%) and H2O/CO2 (30/70 mol%) on the corrosion behavior of low alloyed steels, 9–12% chromium steels and an austenitic steel were studied. It was discovered that the formation of protective chromium rich oxides is hampered due to the carburization of the base material and the formation of chromium rich carbides. The kinetics of corrosion and carburization are quantified. The effect of temperature and the effect of gas pressure are analyzed statistically.  相似文献   

5.
Ni-base wrought alloy HASTELLOY X tube was exposed to Ar–CH4 at 800 and 1000 °C in order to understand the carburization kinetics of the alloy used for fuel injection nozzles of micro-gas turbine combustors. Three different internal carbides, (Cr,Mo)3C2, (Cr,Mo)7C3 and (Cr,Mo)23C6 were observed in this order from the surface, and the partial damage to the outer surface of the specimen tube appeared similar to metal-dusting. The internal carburization kinetics on both the inner and outer parts of tube followed the parabolic rate law. The carbon permeability in HASTELLOY X was obtained, and was slightly smaller than that of Ni–20%Cr.  相似文献   

6.
The present work studied the effect of heat-treatment temperature (1000 °C and 1200 °C) and time (10, 50, and 100 h) on the compressive stress relaxation behavior of plasma-sprayed stand-alone 7 wt.% Y2O3-ZrO2 (YSZ) coatings at test temperatures of 1000 °C, 1100 °C, and 1200 °C, from stresses of 60 and 20 MPa. As-sprayed coatings were also stress relaxed in the baseline condition at room and elevated temperatures. All coatings demonstrated a two-stage relaxation behavior: fast relaxation (stage I) in the first 10 min and much slower relaxation in the final 170 min of the test (stage II). Stage I relaxation, as measured by percentage of the original stress relaxed, accounts for at least 50% of the total stress relaxed despite occurring in only 5-10 min and was attributed to lamella sliding and compaction, and permanent intralamellar crack closure (for tests conducted at higher temperatures). Stage II relaxation behavior is dominated by diffusion creep mechanisms, where prior densification at 1200 °C resulted in reduced relaxation rates compared to coatings heat treated at 1000 °C and in the as-sprayed condition. The 1200 °C test temperature greatly influenced the percentage of relaxation in the coating, more so than the prior coating heat-treatment conditions.  相似文献   

7.
The behavior of dielectric and microwave properties against sintering temperature has been carried out on CaO-SiO2-B2O3 ceramic matrix composites with ZrO2 addition. The results indicated that ZrO2 addition was advantageous to improve the dielectric and microwave properties. X-ray diffraction (XRD) patterns show that the major crystalline β-CaSiO3 and a little SiO2 phase existed at the temperature ranging from 950 °C to 1050 °C. At 0.5 wt% ZrO2, CaO-SiO2-B2O3 ceramic matrix composites sintered at 1000 °C possess good dielectric properties: ?r = 5.85, tan δ = 1.59 × 10−4 (1 MHz) and excellent microwave properties: ?r = 5.52, Q · f = 28,487 GHz (11.11 GHz). The permittivity of Zr-doped CaO-SiO2-B2O3 ceramic matrix composites exhibited very little temperature dependence, which was less than ±2% over the temperature range of −50 to 150 °C. Moreover, the ZrO2-doped CaO-SiO2-B2O3 ceramic matrix composites have low permittivity below 5.5 over a wide frequency range from 20 Hz to 1 MHz.  相似文献   

8.
Face centered cubic (Al0.32Cr0.68)2O3 thin films have been annealed in the temperature range of 500–1000 °C during 2–8 h. The fcc structure of the film remains intact when annealed at temperatures up to 700 °C for 8 h. X-ray diffraction and transmission electron microscopy show the onset of phase transformation to corundum phase alloys in the sample annealed at 900 °C for 2 h, where annealing at 1000 °C for 2 h results in complete phase transformation to α-(Al0.32Cr0.68)2O3. In-plane and out-of-plane line scans performed in EDX TEM and θ/2θ XRD patterns did not show any phase separation into α-Cr2O3 and Al2O3 prior and after the annealing. The apparent activation energy of this process is 380–480 kJ/mol as determined by the Johnson–Mehl–Avrami model.  相似文献   

9.
Preparation of anatase TiO2 with high themal stability is of great importance for its environmental application. In this work, TiOF2 was first synthesized by a simple microwave-assisted hydrothermal route using tetrabutyl titanate and hydrofluoric acid as precursors at 200 °C for 20 min. Then the resulted precipitates were calcined at different temperatures (300-1000 °C) for 2 h. The as-prepared samples were characterized by X-ray diffraction, Raman spectrum, scanning electron microscopy, N2 adsorption-desorption isotherms and X-ray photoelectron spectroscopy. The photocatalytic activity was evaluated using Brilliant Red X3B, an anionic azo dye, as the target organic molecule under UV light irradiation. The results showed that the prepared TiOF2 exhibited weak or no photocatalytic activity. The phase transformation of TiOF2 to anatase TiO2 occurred at about 300 °C. The prepared anatase TiO2 from TiOF2 showed very high thermal stability and the anatase-to-rutile phase transformation temperature was up to 1000 °C. Fluoride ions played an important role in the improvement of thermal stability of anatase TiO2 by strongly adsorbing on the crystal planes of anatase to stabilize the anatase structure. The 700 °C-calcined sample showed the highest photocatalytic activity due to its relative good crystallization and high specific surface areas.  相似文献   

10.
We have investigated the tribological properties of nanocomposite “chameleon” coatings, which adapt their low friction behavior with the surrounding environmental humidity and temperature. The material system of interest included alumina (Al2O3) in an Au matrix with diamond-like carbon (DLC) and MoS2 nanoparticle inclusions. The coating design included formation of nanocrystalline hard oxide particles for wear resistance, embedding them into an amorphous matrix for toughness enhancement, and inclusion of nanocrystalline and/or amorphous solid lubricants for friction adaptation to different environments.Chemical analysis was used to ascertain a correlation between chemical bonding of species and frictional properties. Friction measurements were studied in cycling between humid air and dry nitrogen conditions at room temperature and during heating in air to 500 °C. It was observed that both graphitic carbon and MoS2 worked together to give low friction in variable humidity environment, while Au was valuable for a low friction at elevated temperatures. Friction coefficients were found to be 0.02-0.03 in dry nitrogen, 0.1-0.15 in humid air, and 0.1 in air at 500 °C. Thus the tribological property results have shown that the system provides “chameleon” type adaptation behavior in different environments relevant for aerospace systems.  相似文献   

11.
Y. Wu 《Corrosion Science》2007,49(3):1656-1672
The oxidation of Ni-xSi-10Al alloys (with x = 0, 2, 4 and 6 at.%), has been studied at 900 and 1000 °C in 1 atm of pure O2 to examine the effect of different silicon additions on the behavior of ternary Ni-Si-10Al alloys. The kinetic curves of Ni-10Al are approximately parabolic at both 900 and 1000 °C. Conversely, the kinetics of the ternary alloys at both temperatures correspond generally to a rate decrease faster than predicted by the parabolic rate law, except for the oxidation of Ni-6Si-10Al at 1000 °C, which exhibits a single nearly-parabolic stage. Oxidation of the binary alloy formed at both temperatures an internal oxidation zone beneath a layer of NiO. Oxidation of Ni-2Si-10Al at both temperatures and of the other two alloys at 900 °C formed initially a zone of internal oxidation of Al + Si. However, a layer of alumina forming at the front of internal oxidation after some time blocked the internal oxidation and produced a gradual conversion of the metal matrix of this region into NiO, with a simultaneous decrease of the oxidation rate. Conversely, the oxidation of Ni-4Si-10Al and Ni-6Si-10Al at 1000 °C did not produce an internal oxidation, but formed an alumina layer directly on the alloy surface after an initial stage when also Ni was oxidized. Therefore, silicon exerts the third-element effect by reducing the critical Al content needed for the transition from its internal to its external oxidation with respect to the corresponding Ni-Al alloy. This result is interpreted by means of an extension to ternary alloys of Wagner’s criterion for the same transition in binary alloys based on the attainment of a critical volume fraction of internal oxide.  相似文献   

12.
The carburization of NiCr 32 20 and NiCrSi 60 16 has been studied in CH4-H2 mixtures in the temperature range 900–1100°C. The methods included thermogravimetric measurements and studies on reacted specimens by X-ray diffraction, metallographic, and chemical analysis. Upon carburization internal carbides M7C3 and M23C6 are formed (M=mainly Cr); the rate of carburization is determined by carbon diffusion in the Fe-Ni matrix with carbide precipitations. The effect of the alloying elements Ni and Si on the carburization resistance of austenitic alloys is explained. By the same methods the oxidation and carburization in CO-H2O-H2 mixtures have been studied. The important role of a stable chromium oxide layer for the carburization resistance was confirmed. Creep tests at 1000°C in a CO-H2O-H2 atmosphere where Cr2O3 is stable showed carburization occurring through cracks in the oxide layer. At high strain rates premature failure occurs by carburization, which is followed by internal oxidation and formation of cracks, voids, and holes.  相似文献   

13.
X.H Wang 《Corrosion Science》2003,45(5):891-907
The isothermal oxidation behavior of bulk Ti3AlC2 has been investigated at 1000-1400 °C in air for exposure times up to 20 h by means of TGA, XRD, SEM and EDS. It has been demonstrated that Ti3AlC2 has excellent oxidation resistance. The oxidation of Ti3AlC2 generally followed a parabolic rate law with parabolic rate constants, kp that increased from 4.1×10−11 to 1.7×10−8 kg2 m−4 s−1 as the temperature increased from 1000 to 1400 °C. The scales formed at temperatures below 1300 °C were dense, adherent, resistant to cyclic oxidation and layered. The inner layer of these scales formed at temperatures below 1300 °C was continuous α-Al2O3. The outer layer changed from rutile TiO2 at temperatures below 1200 °C to a mixture of Al2TiO5 and TiO2 at 1300 °C. In the samples oxidized at 1400 °C, the scale consisted of a mixture of Al2TiO5 and, predominantly, α-Al2O3, while the adhesion of the scales to the substrates was less than that at the lower temperatures. Effect of carbon monoxide at scale/substrate was involved in the formation of the continuous Al2O3 layers.  相似文献   

14.
Y3Al5O12 and ZrO2-Y2O3 (8 mol% YSZ) coatings for potential application as thermal barrier coatings were prepared by combustion spray pyrolysis. Thermal cycling of as deposited coatings on stainless steel and FeCrAlY bond coat substrates was carried out at 1000 °C and 1200 °C to determine the thermal fatigue response. Structural and morphological studies on Y3Al5O12 and 8 mol% YSZ coatings before and after thermal cycling have been carried out. It has been noted that the coatings on FeCrAlY substrates remain intact after 50 cycles between room temperature and 1200 °C, whereas the coatings on stainless steel show some minor damage such as peeling off near the periphery after 50 cycles at 1000 °C. Thermal diffusivity values of Y3Al5O12 and 8 mol% YSZ films were measured by using photo thermal deflection spectroscopy and the values are lower than those of coatings produced by conventional techniques such as EBPVD and APS.  相似文献   

15.
The oxidation of Zr50Cu50 alloy at 500-700 °C is characterized by preferential oxidation of zirconium, while the excess of copper is accumulated at the alloy-oxide interface forming the Zr14Cu51 phase. The strong reaction at 800 and 850 °C resulted in the total corrosion of the specimens in 21 and 15 h, respectively. The oxidation at elevated temperatures showed an anomalous decrease of the oxygen consumption rate in the temperature range 930-1000 °C, corresponding to the preferentially oriented crystallites of ZrO2 in the oxide scale at 900 and 1000 °C. The oxide layer consists of ZrO2 and CuO in the whole temperature interval of the oxidation. The reaction kinetics obeys a parabolic rate law. An activation energy of 92.0 ± 0.3 kJ/mol has been estimated.  相似文献   

16.
The hot corrosion behavior of polycrystalline Ti3SiC2 under thin films of Na2SO4 was studied at 900 and 1000 °C in air. The microstructure and composition of the scales were investigated by scanning electron microscope/energy dispersive spectroscope and X-ray diffraction. The results demonstrated that Ti3SiC2 suffered from serious attack during hot corrosion at 900 and 1000 °C. The corroded scale had a duplex microstructure, the outer layer consisted of coarse grains with pores, the inner layer consisted of fine grains and was compact. The whole corroded layer consisted of a mixture of TiO2 and SiO2 after hot corrosion attack, which was different from the scale formed during the oxidation of Ti3SiC2 in air.  相似文献   

17.
Ba(Zn1/3Nb2/3)O3 nanoparticles have been synthesized by a polymerised complex method by using precursor materials of barium nitrate, zinc acetate, niobium oxide, hydrofluoric acid and citric acid. Thermal decomposition characteristics and crystallization behavior of the powders were investigated by the thermogravimetric and differential thermal analysis, X-ray diffractometer and Fourier transform infrared spectroscopy. Ba(Zn1/3Nb2/3)O3 phase started to form at low temperature of 400 °C and, single phase Ba(Zn1/3Nb2/3)O3 perovskite structure was obtained at 1000 °C. Microstructural investigation revealed that the major particle size of Ba(Zn1/3Nb2/3)O3 nanoparticles were in the range of 80–110 nm with spherical morphology and homogeneous size distribution. But the powders also contained some agglomeration.  相似文献   

18.
Effects of small alloying additions of niobium or cerium on the corrosion and creep of Incoloy 800 in CO-H2O-H2-atmospheres In oxidizing and carburizing atmospheres at high temperatures Fe-Ni-Cr-alloys are carburized under creep conditions by carbon transfer through cracks in the oxide layer. In creep experiments in CO-H2O-H2 atmospheres at 1000 °C with several alloys based on Incoloy 800 the carburization could be related to the strain of the specimens. Alloying additions of Nb in the range 0.2 to 1% caused changes in the creep rate, a decrease for >0.35% and an increase for >0.35% Nb. The creep resistance for the high Nb concentrations could be improved by solution annealing at high temperatures (1200 °C). Niobium strongly decreases the carburization - this effect can be explained by the formation of an internal layer of Al- and Nb-oxides beneath the outer Cr2O3 layer. An alloying addition of Ce (0.06%) also has beneficial effects on the creep resistance and carburization resistance of Incoloy 800.  相似文献   

19.
CoAl2O4 nanocrystals were synthesized by sol-gel method using citric acid as a chelating agent at low temperature. The as-synthesized samples were characterized by thermal analysis, X-ray powder diffraction, infrared spectroscopy and transmission electron microscopy. The results show that CoAl2O4 spinel is the only crystalline phase with a size of 10-30 nm in the temperature range 500-1000 °C. The temperature dependence of the distribution of Al3+ and Co2+ ions in the octahedral and tetrahedral sites in nanocrystals was investigated by X-ray photoelectron spectroscopy (XPS). It is observed that the inversion parameter decreases with increasing annealing temperature. Analysis of the absorption properties indicates that Co2+ ions are located in the tetrahedral sites as well as in the octahedral sites in the CoAl2O4 nanocrystals. The origin of the green color (300-500 nm absorption band) should be due to the octahedrally coordinated Co2+ ions.  相似文献   

20.
Ferroelectric PMN-PT thin films with a thickness of 600 nm were epitaxially grown on buffered Si (0 0 1) substrates at a substrate temperature that ranged from 550 to 700 °C using pulsed laser deposition (PLD). LaNiO3 (LNO) electrode thin films with a resistivity of ∼1900 μΩ cm were epitaxially grown on CeO2/YSZ buffered Si (0 0 1) substrates. The PMN-PT thin films grown at 600 °C on LNO/CeO2/YSZ/Si substrates had a pure perovskite and epitaxial structure. The PMN-PT films exhibited a high dielectric constant of about 1818 and a low dissipation factor of 0.04 at a frequency of 10 kHz. Polarization-electric-field (P-E) hysteresis characteristics, with a remnant polarization of 11.1 μC/cm2 and a coercive field of 43 kV/cm, were obtained in the epitaxial PMN-PT films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号