首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In order to better understand the processes that regulate the accumulation in the apoplasm of heavy metals and their mobilization by the plant metabolites it is essential to study the mechanisms that regulate the interactions between metal ions and pectins. In such a context, the sorption of Cd(II), Zn(II), Cu(II) and Pb(II) from single and multi-metal solutions, by a Ca-polygalacturonate gel with a degree of esterification of 18.0 (PGAM1) and 65.5% (PGAM2) was studied in the 3.0–6.0 pH range in the presence of CaCl2 2.5 mM. The sorption of Cr(III) from single metal solution was also considered. The results show that the amount of each metal ion sorbed increases with increasing the initial metal ion concentration and pH. The data from the single metal solution tests show that at pH 6.0 the affinity of the metal ions towards the PGAM1 matrix follows the order: Cr(III) > Cu(II) ? Pb(II) ? Zn(II) ? Cd(II). The simultaneous sorption of the bivalent metal ions by the PGAM1 gels indicates that Pb(II) is selectively sorbed. The FT-IR spectra show that the carboxylate groups are mainly responsible for the metal ion coordination. The ability of PGAM2 to accumulate Cr(III), Cu(II), and Pb(II) was lower than that found in the PGAM1 systems whereas the sorption of Zn(II) and Cd(II) was negligible.  相似文献   

2.
Surface soil (0–20 cm) samples were collected from four chronological sequences of wetlands (i.e., >50-yr-old wetlands, 40-yr-old wetlands, 30-yr-old wetlands and 10-yr-old wetlands) in the Yellow River Delta of China in May and June of 2007. Total contents of Al, As, Cd, Cr, Cu, Ni, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry (ICP-AAS) to investigate the levels, sources and toxic risks of heavy metals in these wetlands. Our results showed an increasing trend for Pb, Cu and Zn along the wetland-forming chronosequence although their pollution levels were low. Both As and Cd exhibited significant enrichment due to their high enrichment factor (EF) values (EF > 5), especially in older wetlands (i.e., >50-yr-old and 40-yr-old wetlands), whereas other heavy metals were minimally or moderately enriched in this region. The results of principal component analysis showed that 83.09% of total variance based on eigenvalues (eigenvalue > 1) could be explained by three principal components (PCs) in four wetlands. The source of Al, Cu, Pb and Zn was different from Cd, Cr and Ni. According to the sediment quality guidelines (SQGs) of China, soil samples in the younger wetlands, especially the 10-yr-old wetlands, were moderately polluted by As, Cd and Ni. According to the SQGs of US EPA, all soil samples were heavily polluted by As and moderately polluted by Ni and soil samples in the older wetlands were moderately polluted by Cr. However, with the exception of As and Ni, the contents of other heavy metals in the four wetlands did not exceed the probable effect level (PEL) values. As, Cd and Ni were identified as heavy metals of primary concerns in four wetlands, Cr were of moderate concern in older wetlands, and Pb, Cu and Zn should be paid more attention in younger wetland (i.e., 10-yr-old and 30-yr-old wetlands). A new and sensitive toxic risk index (TRI) is developed for the accurate assessment of toxic risk for heavy metals in wetland soils compared with the sum of the toxic units (∑TUs), and As, Cr, Ni and Cd showed higher contributions to TRI.  相似文献   

3.
The concentrations of heavy metals in the roots, rhizomes, stems and leaves of the aquatic macrophyte Phragmites australis (common reed), and in the corresponding water and sediment samples from the mouth area of the Imera Meridionale River (Sicily, Italy), were investigated to ascertain whether plant organs are characterized by differential accumulation, and to test the suitability of the various organs for heavy metal biomonitoring of water and soil. Heavy metals considered were Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn. Results showed that belowground organs were the primary areas of metal accumulation. In particular, metal concentrations in plant organs decreased in the order of root > rhizome  leaf > stem. All four organs showed significant differences in concentration for Cr, Hg, Mn, Zn, thus suggesting low mobility from roots to rhizomes and to aboveground organs. Although the organs followed different decreasing trends of metal concentration, the trend Mn > Zn > Pb > Cu was found in each plant organ. Mn showed the highest concentrations in all organs whereas the lowest concentrations regarded Cd and Cr in the belowground and aboveground organs, respectively. The toxic threshold was exceeded by Cr in roots, rhizomes and leaves, Mn in roots and leaves, Ni in roots. The highest average concentrations were found as follows: Cd, Hg, Pb, Zn in root, Cr, Mn, Ni in sediment, Cu in water. Positive linear relationships were found between heavy metal concentrations in all plant organs and those in water and sediment, thus indicating the potential use of such organs for pollution monitoring of water and sediment. Advantages of using plant species as biomonitors, especially Phragmites australis, were also discussed.  相似文献   

4.
Currently, heavy metal (HM) contamination in greenhouse soils is a significant concern due to the rapid expansion of greenhouse agriculture. However, it is difficult to accurately assess HM pollution in greenhouse soils in China due to the lack of local geochemical baseline concentrations (GBCs) or corresponding background values. In the present study, the GBCs of HMs in Dongtai, a representative greenhouse area of China, were established from subsoils using cumulative frequency distribution (CFD) curves. The pollution levels of HMs and potential ecological risks were investigated using different quantitative indices, such as geo-accumulation index (Igeo), pollution index (PI), pollution load index (PLI) and ecological risk index (RI), based on these regional GBCs. The total concentrations of six metals (Cd, Cr, Cu, Ni, Pb and Zn) in surface soils were determined and shown to be lower than the concentrations reported in other greenhouse regions of China. The GBCs of Cd, Cr, Cu, Ni, Pb and Zn were 0.059–0.092, 39.20–54.50, 12.52–15.57, 20.63–23.26, 13.43–16.62 and 43.02–52.65 mg kg−1, respectively. Based on this baseline criterion, Cd, Pb and Zn accumulated in the surface soils because they were present at concentrations higher than their baseline values. The soils were moderately polluted by Cd according to the Igeo values, and the PI results indicated that moderate Cd contamination was present in this area. The large variation of Igeo value of Cd revealed that Cd in this area was likely influenced by agricultural activities. The PLI showed that most of the study area was moderately polluted. However, an analysis of the RI showed that the investigated HMs had low ecological risks. Correlation analysis and principle component analysis suggested that the Cd, Pb and Zn in the greenhouse soils mainly originated from anthropogenic sources (agricultural activities, atmospheric deposition etc.), while Cr, Cu, and Ni originated from natural sources. The findings of this study illustrated the necessity of GBC establishment at the local scale to facilitate more accurate HM evaluation of greenhouse soils. It is advisable to pay more attention to Cd, which could cause environmental problems in the greenhouse system.  相似文献   

5.
《Biological Wastes》1990,31(4):291-301
Seven mixtures from four organic residues—aerobic sewage sludge, city refuse, peat residue and grape debris—were made up to study the influence of the composting and maturation processes on the extractability of Fe, Cu, Ni, Zn, Cd, Pb, Cr and Mn by a chelating agent (diethylenetriaminepentaacetic acid, DTPA) and a neutral salt solution (0·05m CaCl2) from the residues.Composting and maturation increased the concentration of heavy metals in the materials due to the loss of weight of the materials during these processes. The metals also became more insoluble, and extractants employed removed larger amounts of metals from the raw composts than from the mature composts. In general, CaCl2-extractable metals did not correlate significantly with the metal content of the composts. With DTPA-extractable metals, the only ones that showed significant correlations between the quantity of metal extracted by DTPA and the metal content of the samples in nearly all the composts studied were Pb and Zn.The load of ‘zinc equivalent’ increased with the composting and maturation processes, and the Cd/Zn ratio decreased with those processes.  相似文献   

6.
The concentration and chemical fractionation of globally alarming six heavy metals (Cr, Ni, Cu, As, Cd and Pb) were measured in surface water and sediment of an urban river in Bangladesh. The decreasing trend of metals were observed in water as Cr > Cu > As > Ni > Pb > Cd and in sediment as Cr > Ni > Cu > Pb > As > Cd. The level of studied metals exceeded the safe limits of drinking water, indicated that water from this river is not safe for drinking and/or cooking purposes. However, the investigated metals showed low mobility except for Cd and Pb which could pose a severe threat to the aquatic environment. Contamination factor (CF) and geoaccumulation index (Igeo) demonstrated that most of the sediment samples were moderately to heavily contaminated by Cr, As, Cd and Pb. The pollution load index (PLI) values were above one (>1) indicates progressive deterioration of the sediment quality. The extent of pollution by heavy metals in the river Korotoa implies that the condition is much frightening to the biota and inhabitants in the vicinity of the river as well.  相似文献   

7.
The present study was performed at a heavy-traffic affected soil to examine the efficacy of bioaccumulation and translocation potentials of heavy metals by the naturally growing weed Plantago major. Heavy metals were analyzed in soil as well as in plant below- and above-ground parts along different distances from a heavy-traffic highway. All the investigated soil heavy metals, except Cd, varied significantly, while pH and E.C had no significant difference, with increasing distance from the highway. Likewise, there was a significant decrease of heavy metals in plant below- and aboveground parts. In addition, no significant difference between most soil and root heavy metals at 20 and 100 m as well as those at 500 and 750 m distance from the highway. The bioaccumulation factor (BF) of all heavy metals, except Cd and Sr, were less than unity at most distances. However, Cd showed relative BF decline with the distance in contrast to Sr, which increases as distance from the highway increases. On the other hand, the translocation factors (TF) of Cd, Co, Cu, Pb and Zn were higher at the distances far from the highway, while that of Fe, Cr and Sr were higher near the highway. Furthermore, the enrichment factor (EF) showed small variations, among the investigated heavy metals, with varying distances from the pollution source. It was found that soil Fe, Al, Cr, Ni, Sr, V and Zn had significant positive correlation with all investigated heavy metals in P. major roots. The higher TFs of Cd, Fe and Pb in P. major shoots makes it suitable for phytoextraction from soil, while the lower ratios of Al, Mn, V, Co, Ni, Cr, Zn, Cu and Sr make it suitable for their phytostabilization. Therefore, this plant can be used as a bioindicator and biomonitor for traffic related heavy metals.  相似文献   

8.
《Process Biochemistry》2007,42(11):1546-1552
Heavy metals are toxic pollutants released into the environment as a result of industrial, mining and agricultural activities. The biosorption of Pb, Cu, Cd, and Ni from single and binary metal systems were studied in equilibrium systems and in a flow-through column packed with a calcium-saturated anaerobic sludge biosorbent, respectively. The single-metal sorption uptake capacity of the biomass for Pb was slightly inhibited by the presence of Cu and Cd cations (by 6%) and by the presence of nickel (by 11%). The affinity order of anaerobic biomass for the four metals was established as: Pb > Cu > Ni > Cd. Factors such as hydration effects, hydrolysis effects and covalent binding of the metal ions may contribute to this result. By studying the breakthrough curves obtained from a fixed bed column fed with an equimolar mixture of Pb, Cd, Cu, and Ni, it was determined that lead was the last metal to break through the column at the 150 bed volume mark compared to 4, 15, 30 bed volume marks for Ni, Cd, and Cu, respectively.  相似文献   

9.
In this study, a survey for the spatial distribution of heavy metals in Hengshuihu Wetland of China was conducted. Samples were collected from three compartments, water, sediment, and reed (Phragmites communis Trin), at different sites, and their contents of heavy metals, including mercury (Hg), arsenic (As), chromium (Cr), lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd), were analyzed. The results showed heavy metals in the sediments distributed in the Buffer Zone and Wangkou Sluice area at concentrations relatively higher than those in other areas, while concentrations in the Core Zone were lower. The heavy metal concentrations of water bodies in all areas, except those for Hg and Pb, were lower than the cutoff values for the first-grade water quality that was set as the highest standard to protect the national nature reserves. The heavy metal distributions among the three compartments were significantly different, with the following order: sediment > plant > water. In the reeds, accumulated amounts of different heavy metals varied in the following order: Hg > Zn > As > Cu > Cr. Concentrations of heavy metals only showed weak correlations between the water bodies and the sediments. Concentrations of heavy metals (except Hg and Cr) had no corrections between the sediments and the reeds. The distribution of mercury indicated that it enters the lake mainly from the atmosphere and outside water bodies. The concentrations of As, Hg, Cr, Cu and Zn in different parts of the reeds were detected and their abundances were ranked in the following order: root > leaf > stem.  相似文献   

10.
Total concentrations of selected trace elements in Neem powder and in Neem tea were determined by inductively coupled plasma mass spectrometry (ICP-MS). The data revealed that despite high total concentrations of the potentially toxic elements Al and Ni in Neem powder, their amounts dissolved in Neem tea were low. Total concentrations of the other toxic elements Pb, As and Cd were also very low and do not represent a health hazard. In contrast, total concentrations of the essential elements Fe, Cu, Zn, Se Mo and Cr in Neem powder were high and also considerable in Neem tea. Consuming one cup of Neem tea (2 g per 200 mL of water) covers the recommended daily intakes for Cr and Se and represents an important source of Mo and Cu.Speciation analysis of Cr by high performance liquid chromatography (HPLC) coupled to ICP-MS with the use of enriched Cr isotopic tracers to follow species interconversions during the analytical procedure demonstrated that toxic Cr(VI) was not present either in Neem powder or in Neem tea. Its concentrations were below the limits of detection of the HPLC–ICP-MS procedure applied. The speciation analysis data confirmed that even Cr(VI) was added, it was rapidly reduced by the presence of antioxidants in Neem leaves. By the use of enriched Cr isotopic spike solutions it was also demonstrated that for obtaining reliable analytical data it is essential to apply the extraction procedures which prevent Cr species interconversions, or to correct for species transformation.  相似文献   

11.
BackgroundThe use of basidiomycetes for metal removal is an alternative to traditional methods. In this, the biomass acts as a natural ionic exchanger removing metals from solution.ObjectiveTo develop a laminar biosorbent using a basidiomycete fungus resistant to high Cd, Ni and Pb concentrations.MethodsThe tolerance of Trametes versicolor, Pleurotus ostreatus and Phanerochaete chrysosporium was evaluated using increasing concentrations of the heavy metal salts, cadmium sulphate, lead acetate and nickel chloride. A biosorbent system was developed based on polyethylene sheets with a fungal biomass. It was evaluated in bubble columns using synthetic wastewater with the 3 metal salts at a rate of 300 mg/l. Finally, in a complementary experiment using shake flasks, the effect of a higher amount of biomass related to the metal removal efficiency was evaluated.ResultsP. chrysosporium strain was more tolerant to C4H6O4Pb (10,000 mg/l), Cl2Ni (300 mg/l) and CdSO4·8H2O (1,500 mg/l). In a reactor, under non-ligninolytic conditions, the fungus removed 69% of the chemical oxygen demand and produced enzymes such as LiP (0.01 U/l) and MnP (0.6 U/l.). An accumulation of metals in the wall was observed. By increasing the biomass to 1.6 (w/v), the metal biosorption was favored in the mixture (57% Pb, 74% Cd, and 98% Ni) and separately (95% Pb, 60% Cd, and 56% Ni). Competition between Ni and Pb by ligands of the wall was observed.ConclusionA novel laminar system based on P. chrysosporium viable biomass was developed. It has a large surface area and tolerance to high concentrations of Cd, Ni and Pb. It seems to be an alternative for the removal of metals from water.  相似文献   

12.
Metal hyperaccumulation is of great interest in recent years because of its potential application for phytoremediation of heavy metal contaminated soils. In this study, a field survey and a hydroponic experiment were conducted to study the accumulation characteristics of lead (Pb), zinc (Zn) and cadmium (Cd) in Arabis paniculata Franch., which was found in Yunnan Province, China. The field survey showed that the wild population of A. paniculata was hyper-tolerant to extremely high concentrations of Pb, Zn and Cd, and could accumulate in shoots an average level of 2300 mg kg?1 dry weight (DW) Pb, 20,800 mg kg?1 Zn and 434 mg kg?1 Cd, with their translocation factors (TFs) all above one. Under the hydroponic culture, stimulatory effects of Pb, Zn and Cd on shoot dry biomass were noted from 24 to 193 μM Pb, 9 to 178 μM Cd and all Zn supply levels in nutrient solution, while the effects were not obvious in the roots. Chlorophyll concentrations in Pb, Zn and Cd treatments showed an inverted U-shaped pattern, consistent with the change of plant biomass. Pb, Zn and Cd concentrations in the shoots and roots increased sharply with increasing Pb, Zn and Cd supply levels. They reached > 1000 mg kg?1 Pb, 10,000 mg kg?1 Zn and 100 mg kg?1 Cd DW in the 24 μM Pb, 1223 μM Zn and 9 μM Cd treatment, respectively, in which the plants grew healthy and did not show any symptoms of phytotoxicity. The TFs of Zn were basically higher than one and the amount of Zn taken by shoots ranged from 78.7 to 90.4% of the total Zn. However, the TFs of Pb and Cd were well below one, and 55.0–67.5% of total Pb and 57.8–83.5% of total Cd was accumulated in the shoots. These results indicate that A. paniculata has a strong ability to tolerate and hyperaccumulate Pb, Zn and Cd. Meanwhile, suitable levels of Pb, Zn and Cd could stimulate the biomass production and chlorophyll concentrations of A. paniculata. Thus, it provides a new plant material for understanding the mechanisms of stimulatory effect and co-hyperaccumulation of multiple heavy metals.  相似文献   

13.
This paper reports the response of isopods exposed to fallout of a municipal solid waste landfill located in central Italy. Soil samples and specimens of Armadillidium vulgare were collected at different distances from the landfill and analyzed to determine the concentrations of heavy elements such as As, Cd, Co, Cr, Cu, Ni, Pb, Sb, V and Zn. The isopod analysis was performed on unpurged and purged specimens. Analytical data indicate that the soil contents of heavy elements were quite uniform and within the respective local geochemical background. Slight enrichments of Cu and Pb were found in some soils collected within the solid waste. Purged isopods showed an accumulation of As, Co, Cr, Ni, Sb and V whose body levels decreased as the distance from the landfill increased. Cd, Cu, Pb and Zn concentrations in purged specimens were rather uniform and no significant variation trend occurred. This result probably was due to the fact that the isopods are provided with physiological mechanisms of regulation for these heavy elements. Analytical data also indicate the ability of A. vulgare to adsorb differently the heavy elements according to the following order: As > Co > Ni > Pb > V. The contents of heavy elements in unpurged specimens were higher than in purged ones. This finding suggested that the defecation has marked effects on the tissue levels of heavy elements in isopods. This study indicates that the isopods provide useful information about environmental quality in areas characterized by low and discontinuous emission of heavy elements and their low accumulation in soil.  相似文献   

14.
Recent studies indicate that elasmobranch fish respond differently to metal exposure than marine teleosts. Accumulation rates can be high, which despite the fact that normal background levels for metals in the marine environment are low, is worrying due to the long life span and late fecundity of most shark. The goals of the present study were to examine differences in accumulation rates and toxicity of a range of metals at equimolar concentrations (10 µM) in the Mediterranean or spotted dogfish, Scyliorhinus canicula. For this purpose, we exposed the dogfish to Ni (587 µg/L), Cd (1124 µg/L), Pb (2072 µg/L), Cu (635 µg/L), and Ag (1079 µg/L and two additional exposures at 10 µg/L and 1 µg/L) for one week and measured total metal accumulation, metallothionein induction, and parameters related to osmoregulation. Our study confirms the high toxicity and accumulation rates of Ag for elasmobranch fish, even at levels 100 to 1000 times lower than exposure levels of other metals. Also Pb accumulated readily in all organs, but did not cause any osmoregulatory disturbance at the exposure levels used. Ni and Cd seem to accumulate primarily in the kidney while Cu mainly accumulated in liver. In contrast to Ni and Cd, the three other metals Ag, Cu and Pb accumulated in the rectal gland, an important organ for osmoregulation and possible target organ for metal toxicity. Only Cu succeeded in initiating a protective response by inducing MT synthesis in liver and gills.  相似文献   

15.
Biochemical reactions to Cu, Cd, Zn and Pb in the aquatic moss Fontinalis antipyretica were studied in order to characterize the physiological background of the metal response. Chlorophyll fluorescence and intracellular metal localization and stress protein levels were measured. Exposure to 25 or 100 μM Cu over a 7-day period resulted in a decline of chlorophyll fluorescence to about 70% and 52%, respectively. Up to 100 μM Cd caused a decrease in chlorophyll fluorescence to 75%. With all metals used at 25–100 μM concentrations, the intracellular uptake increased. For all metals investigated at 25–100 μM, the intracellular uptake increased. Maximum values were reached at 100 μM Cu, Pb, Zn or Cd exposure. As shown by analytical electron microscopy (EDX, EELS) moss material treated with 50 μM Cu exhibited reduced sulphur levels in the cytoplasm and an increase in phosphate in vacuolar dense particles. EEL-spectra indicated that Cu is chelated in the cytoplasm by SH-groups and coprecipitated with orthophosphate in vacuoles. To monitor the stress response at the protein level, heavy metal induced heat shock protein 70 (hsp70) was measured. An antibody was raised against conserved plant metallothionein p2 motifs derived from Brassica juncea. In all metal-treated samples the antibody bound to proteins of about 8 kDa. However, sequencing failed to reveal significant homologies to known proteins. These experiments provide for the first time results on protein level after heavy metal stress in the aquatic bioindicator moss.  相似文献   

16.
Karachi is one of the most populated urban agglomerations in the world. No categorical study has yet discussed the geochemical baseline concentrations of metals in the urban soil of Karachi. The main objectives of this study were to establish geochemical baseline values and to assess the pollution status of different heavy metals. Geochemical baseline concentrations of heavy metals were estimated using the cumulative frequency distribution (CDF) curves. The estimated baseline concentrations of Pb, Cr, Cu, Zn and Fe were 56.23, 12.9, 36.31, 123.03 and 11,776 mg kg−1, respectively. The pollution status of heavy metals in urban soils was evaluated using different quantitative indices (enrichment factor–EF, Geo-accumulation Index–Igeo, and pollution index–PI). Enrichments factors of the selected heavy metals determined by using Fe as a normalizer showed that metal contamination was the product of anthropogenic activities. The urban soils of Karachi were found to have a moderate to moderately severe enrichment with Pb, whereas Cr and Cu has moderate and Zn has minor enrichment. Igeo results indicated moderate soil contamination by Pb at some of the sampling locations. PI for Pb, Cr, Cu and Zn was found in the range of 0.04–3.42, 0.19–1.55, 0.27–2.45 and 0.32–1.57, respectively. Large variations in PI values of Pb revealed that soil in those areas of the city which are influenced by intensive anthropogenic activities have exceptionally high concentrations of Pb. The findings of this study would contribute to the environmental database of the soil of the region and would also facilitate both at the local and the international scales, in a more accurate global environmental monitoring, which will eventually facilitate the development of management and remediation strategies for heavy metal contaminated urban soil.  相似文献   

17.
Typha angustifolia was evaluated for various heavy metals (Cu, Pb, Ni, Fe, Mn, and Zn) bioremediation potential from aqueous solution containing variable concentrations of phenol (100–800 mg l?1) and melanoidin (2500–8500 Co–Pt) at 20, 40, and 60 days. The concentration of phenol (200–400 mg l?1) along with melanoidin 2500 Co–Pt showed optimum for phytoremediation of tested heavy metals, while, higher concentrations of melanoidin (5600–8500 Co–Pt) showed toxic effect on T. angustifolia along with phenol. Phenol and melanoidin showed adverse effect on T. angustifolia of up to 20 days incubation, but this leads to induction of peroxidase and ascorbic acid activity to cope with adverse conditions. Subsequently, as pollutants were decreased along with plant growth, peroxidase and ascorbic acid also declined. However, with reduction of peroxidase, catalase level was increased. The Cu, Zn, and Ni were accumulated at maximum in all tested conditions. The TEM observations of T. angustifolia showed clotted deposition of metals and shrinkage of cell in root, breakdown of spongy and palisade parenchyma of leaves at higher concentration of phenol (100 mg l?1) and melanoidin (5500 Co–Pt). Thus, this study concluded that T. angustifolia could be a potential phytoremediator for heavy metals from metal, melanoidin, and phenol containing industrial wastewater at optimized condition.  相似文献   

18.
The anthropogenic impact of xenobiotics contributes to environmental risk for the aquatic environment and thus, must be controlled. Elodea canadensis, a cosmopolitan aquatic macrophyte with an important role in the ecology of many littoral zones, may provide an integrated record of pollution. Therefore, it was interesting to investigate the accumulation of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in this species and in water and bottom sediments collected from rivers with various levels of contamination. Of these rivers one control and one polluted was selected for the collection of E. canadensis for an experiment to compare the ability of this species to accumulate Cu and Zn. These elements were supplemented at concentrations (mg L−1) of 0.01, 0.02, 0.03, 0.05, 0.08 and 0.14 as CuSO4·5H2O, and 0.4, 0.6, 0.9, 1.4, 2.03 and 3.04 as ZnSO4·7H2O and in a mixture containing (mg L−1) 0.01Cu + 0.4Zn, 0.02Cu + 0.6Zn, 0.03Cu + 0.9Zn, 0.05Cu + 1.4Zn, 0.08Cu + 2.03Zn and 0.14Cu + 3.04Zn. After the experiment, E. canadensis from the polluted river contained significantly higher Cu and Zn concentrations when applied separately and also significantly higher Cu and Zn concentrations when applied as a mixture compared to the control river. These higher concentrations in E. canadensis from the polluted river were found in all combinations in the experiment. Thus, E. canadensis habituated in polluted sites to the exposure, and long-term influence of elevated metal levels appeared to be better adapted, and it also exhibited a higher increase in biomass than plants from the control river in all the experimental Cu and Zn solutions. Younger leaves of E. canadensis were more resistant to the effects of Cu and Zn than older leaves. Both Cu and Zn negatively affected the cell structure of older leaves, although the influence of Cu on plasma membrane integrity and chloroplast distribution was stronger than that of Zn. The influence of the Cu + Zn mixture on E. canadensis resulted in less pronounced cell disintegration than the influence of Cu added separately.The explanation of differences in the E. canadensis biomass increase and metal concentrations under the binary Cu and Zn impact needs further examination.  相似文献   

19.
The concentration of Mn, Fe, Zn, Cu, Cd, Cr, Ni, Ag, Mo, Nd, Al, Ce, As, Sr, Pb, Pt and Hg was analysed in water, sediments, and aquatic organisms from the San Roque Reservoir (Córdoba-Argentina), sampled during the wet and dry season, to evaluate their transfer through the food web. Stable nitrogen (δ15N) isotopes were used to investigate trophic interactions. According to this, samples were divided into three trophic groups: plankton, shrimp (Palaemonetes argentinus) and fish (Silverside, Odontesthes bonariensis). Liver and gills are the main heavy metal storage tissues in fish. Hg and As concentrations in the muscle of O. bonariensis exceed the Oral Reference doses for metals established by USEPA (2009). Trophic magnification factors (TMFs) for each element were determined from the slope of the regression between trace element concentrations and δ15N. Calculated TMFs showed fundamental differences in the trophodynamics of the studied elements during the wet and dry season in the San Roque Reservoir. Concentrations of Ni, Cd, Cr, Al, Mn, Fe, Mo, Ce, Nd, Pt and Pb during both seasons, and Sr during the dry season, showed statistically significant decreases (TMF < 1) with increasing trophic levels. Thus these elements were trophically diluted in the San Roque food chain. Conversely, Cu, Ag and As (dry season) showed no significant relationships with trophic levels. Among the elements studied, Hg in the wet season, and Zn in the dry season were the only ones showing a statistically significant increase (TMF > 1) in concentration with trophic level. Current results trigger the need for further studies to establish differential behaviour with different species within the aquatic web, particularly when evaluating the transfer of toxic elements to edible organisms, which could pose health risks to humans.  相似文献   

20.
Leaves of common deciduous trees: Aesculus hippocastanum and Tilia spp. from three parks within the urban area of Belgrade (Serbia) were studied as biomonitors of trace elements (Cr, Fe, Ni, Cu, Zn, and Pb) atmospheric pollution. The seasonal trace elements accumulation (September/May) in the leaves, and their temporal trends, were assayed in a multy-year period (2002–2006). Significant seasonal accumulation was evident in samples of A. hippocastanum for: Cr, Fe, Ni, Zn, and Pb, as well as in Tilia spp. leaves, except for Zn. For Cu, no regular seasonal accumulation was observed in leaves of the studied species. Decreasing temporal trend in leaf tissue concentrations were evident for Pb in A. hippocastanum (16.0 μg g?1 in September of 2002 to 4.6 μg g?1 in September of 2006) which is in accordance with the bulk atmospheric deposition measurements. The leaf Cu concentrations were the highest at one of the studied sites, also marked previously with extremely high atmospheric Cu loadings by some other monitoring (bulk deposition, particulate matter, moss) surveys. Decreasing Cu concentrations temporal trend at that site in the leaves of A. hippocastanum was evident through the studied years and also confirmed with the bulk deposition measurements. The Cr, Fe, Ni, and Zn leaf tissue concentrations remained at about the same level in the studied species throughout the experiment and no agreement was observed with the bulk deposition data. Comparing the studied biomonitors, the leaves of A. hippocastanum showed significantly higher elements accumulation and more consistency than Tilia spp., so it may be considered as more suitable species for assessment of Pb and Cu atmospheric pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号