首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The properties of AC-5 control asphalt binder, mixture containing the same asphalt were compared with the properties of AC-10 asphalt binder modified by 0.75%, 1%, 2%, and 3% of polyester resin (PR), mixture containing pure AC-10 and AC-10 modified by 0.75% of PR, respectively.Initial research was done to determine the physical properties of unmodified and PR modified asphalt binders. The AC-10 asphalt binder modified by 0.75% of PR had good results compared to AC-5 control asphalt binder and all other modified binders, and hence this modified binder as well as unmodified binders were used to prepare Marshall samples for Marshall stability and flow, indirect tensile stiffness modulus (ITSM), indirect tensile strength (ITS) and creep stiffness tests.The results of investigation indicate that AC-10 + 0.75% PR binder has better physical properties than AC-5 control asphalt binder and, at the same time, PR improves mechanical properties of asphalt mixture.  相似文献   

2.
Accurately predicting the viscous properties of crumb rubber modified (CRM) binders has proven difficult, especially as these properties tend to vary with changing crumb rubber concentrations and temperatures. This study explores the utilization of the statistical regression and neural network (NN) approaches in predicting the viscosity values of CRM binder at various temperatures (135 °C and greater). A total of 53 CRM binder combinations were prepared from two different rubber types (ambient and cryogenic), three different binder sources, four rubber concentrations (0%, 5%, 10%, and 15%), and five crumb rubber gradations (ADOT, SCDOT, 0.18 mm, 0.425 mm, and 0.85 mm). The results indicated that the regression model is easy to use and can be used for viscosity prediction, similarly NN-based models also provided accurate for predictions for the viscosity values of CRM binders regardless of rubber type and can easily be implemented in a spreadsheet. In addition, the developed NN model can be used to predict viscosity values of other types of CRM binders efficiently. Furthermore, the sensitivity analysis of input variables indicated that the changes of viscosity are significant as the changes of asphalt binder grade, test temperature, and rubber content. The results also show that these three independent variables are the most important factors in the developed NN models in comparison with other variables.  相似文献   

3.
Benefits of adding Tall oil pitch (TOP), Styrene-butadiene-styrene (SBS) and TOP + SBS to AC-10 in variant quantities to AC-10 were investigated. Initial research was done to determine the physical properties of asphalt cement and modifiers.Seven asphalt binder formulations were prepared with 8% of TOP; 8 + 3, 8 + 6 and 8 + 9% of TOP + SBS, respectively; 3, 6 and 9% of SBS by total weight of binder. After that, Marshall samples were prepared by using the modified and unmodified asphalt binders.Additionally, compression strength test were done in different conditions to determine water, heat and frost resistance of all Marshall samples.Fatigue life and plastic deformation tests for Marshall samples (for different asphalt mixtures: modified and unmodified) were carried out using PC controlled repeated load indirect tensile test equipment developed at Suleyman Demirel University by Tigdemir (SDU-Asphalt Tester).The results of investigation indicate that asphalt mixture modified by 8% TOP + 6% SBS gives the best results in the tests that were carried out in this study, so that, this modification increases physical and mechanical properties of asphalt binder.  相似文献   

4.
The application of crumb rubber in asphalt mixtures is intended to improve the binder properties by reducing the binder’s inherent temperature susceptibility. This research investigated the interaction effects of CRM binders as a function of various blending treatments in the laboratory. For this study, CRM binders were produced using seven blending times (5, 30, 60, 90, 120, 240, and 480 min), three blending temperatures (177, 200, and 223 °C), and four rubber contents (5%, 10%, 15%, and 20% by weight of asphalt binder). The results from this study showed that (1) The interaction time and interaction temperature for CRM binders were observed to have significant effect on the binder properties; (2) The longer time and higher temperature for interaction of CRM binders resulted in an increase in the high failure temperature and the viscosity. This is thought to be due to the increase in the rubber mass through binder absorption. However, this study found that the control binder of PG 64-22 had little change of the binder properties as a function of interaction conditions; (3) The CRM percentage influence is statistically significant on the viscosity and G*/sin δ values. Also, the asphalt binder with higher CRM percentage showed a higher large molecular size (LMS) value, and the increase in CRM percentage is considered to result in the additional loss of the low molecular weight in the asphalt binder to the CRM.  相似文献   

5.
Asphalt binder viscosity is of great importance during the production process of hot mix asphalt mixture as typically asphalt plants will store binders between 149 °C and 177 °C. SHRP guidelines state that asphalt binder viscosity must not exceed 3 Pa s. Therefore, given the documented increases in asphalt viscosity when modified with crumb rubber modifier (CRM) it is necessary to produce asphalt binder that fulfills the SHRP criteria while not exceeding plant mixing and storing requirements. This paper reports the results of an investigation of the importance of CRM properties on viscosity of CRM binder. Two binder sources were modified at four concentration levels using four different crumb rubber sources; the viscosities of the produced binders were evaluated by AASHTO T 316. Crumb rubber properties were evaluated by elemental analysis using a scanning electron microscope (SEM) and by determination of glass transition temperature (Tg) using a differential scanning calorimeter (DSC). In general, results indicate that processing procedure and tire type plays an important role in the determination of CRM binder viscosity.  相似文献   

6.
This paper presents an experimental analysis of the relationship between molecular sizes of mixed rubberized binders (aged rubberized binders + virgin rubberized binders) and the engineering properties of recycled aged rubberized mixtures. Gel permeation chromatography (GPC) was utilized to characterize the molecular size change of rubberized binders depending on three aging levels and four long-term aged (LTA) binder percentages. Rubberized mixtures were artificially long-term aged in the laboratory, and the aged rubberized mixtures were recycled at 0%, 15%, 25%, and 35% (by weight of total mixture) using typical recycling guildelines. Samples of laboratory-prepared recycled aged rubberized mixtures were tested for indirect tensile strength (ITS) in dry and wet states, rutting resistance, resilient modulus, and ITS after long-term aging in the laboratory. In general, the results indicated that the compositional changes of mixed rubberized binders have good correlations with the engineering properties of recycled aged rubberized mixtures, except for the resilient modulus.  相似文献   

7.
This research investigated the feasibility using asphalt rubber (AR), produced by blending ground tire rubber (GTR) with an asphalt, as a binder for stone matrix asphalt (SMA). Two different sizes of GTR produced in Taiwan were used. The potential performance of AR–SMA mixtures was also evaluated. The results of this study showed that it was not feasible to produce a suitable SMA mixture using an asphalt rubber made by blending an AC-20 with 30% coarse GTR with a maximum size of 0.85 mm. However, SMA mixtures meeting typical volumetric requirements for SMA could be produced using an asphalt rubber containing 20% of a fine GTR with a maximum size of 0.6 mm. No fiber was needed to prevent drain-down when this asphalt rubber was used. The AR–SMA mixtures were not significantly different from the conventional SMA mixtures in terms of moisture susceptibility from the results of AASHTO T283 tests. The results of the wheel tracking tests at 60 °C show that rutting resistance of AR–SMA mixtures was better than that of the conventional SMA mixtures.  相似文献   

8.
This study was initiated to investigate the aging characteristics of binders due to the reaction with the crumb rubber. For this laboratory study, the crumb rubber modified (CRM) and control binders were aged using an oven aging method. Also, asphalt mixtures with CRM or control binders were made and subjected to short-term and long-term aging treatments. The properties of these aged binders were evaluated using gel permeation chromatography (GPC) test procedures. The results from this study showed that: (1) the higher CRM percentage resulted in the higher large molecular size (LMS) value of asphalt binder under the binder aging conditions, and the rate of increase in the LMS value was found to have a relation to the CRM percentage. The asphalt binders with higher CRM percentages (15% and 20%) had a trend the LMS values decrease after a certain level. This finding is thought to be related to the required time for the rubber to be fully digested; (2) after subjecting to the long-term oven aging, the asphalt mixtures with the control and CRM modified binders were found to have statistically insignificant differences in aging level, measured using the LMS values. The very thin film thickness of binder in asphalt mixture and the aging temperature of 100 °C insufficient to enable a reaction were considered to be the main reasons that no differences were observed from the standpoint of the aging effect.  相似文献   

9.
Firstly, the performance-based properties of rejuvenated aged asphalt binders, i.e., the blends of aged binders containing a rejuvenator at various percentages, were investigated under high, intermediate and low temperatures. The tests were conducted on the blends at three stages as follows: no aging, rolling thin film oven (RTFO) residuals and as well RTFO + pressure aging vessel (PAV) residuals through dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests. Optimum concentrations of the rejuvenator needed for the blends to reach a target PG grade were obtained from the blending charts of the rejuvenated aged binders in terms of performance properties. The rejuvenator is a soft binder containing a low asphaltene content of 2 wt%. Secondly, selected performance-based properties were conducted on hot mix asphalt (HMA) using the rejuvenated aged binder and a virgin HMA as a control mixture. Results showed that the rejuvenator affected significantly the performance-based properties of both the rejuvenated aged binders and the mixtures containing the rejuvenated aged binders. It was possible to get optimum concentrations of the rejuvenator using the blending charts so that the rejuvenated binders reach a target PG grade. The mean value of the concentrations was proved to be more reliable through the performance-based properties of the mixtures if it is used for a design value for recycling. The properties of the asphalt paving mixtures with the rejuvenated binders were even improved or in the same level as the properties of the virgin mixtures.  相似文献   

10.
Both the RTFO (rolling-thin film oven) aging of asphalt binders and the STOA (short-term oven aging) of asphalt mixtures are designed to simulate aging during the construction of hot mix asphalt (HMA) pavements. Many studies have been conducted evaluating the aging effects on asphalt binders since their properties can be easily measured using many conventional tests, such as rotational viscometer, DSR (dynamic shear rheometer), and BBR (bending beam rheometer). However, studies on asphalt mixture aging have been limited to mechanical properties such as strength and fatigue characteristics because considerable effort is required to identify the aging of the asphalt binder in a mixture. This study evaluated the effects of short-term oven aging on asphalt mixtures using the GPC (gel-permeation chromatography) procedure. Nine asphalt mixtures, using three different binder sources, were prepared and five short-term aging methods were used to evaluate these mixes. For comparison, the RTFO aging was also conducted for nine asphalt binders. The aging of a binder within asphalt mixtures, including polymer-modified mixtures, could be identified under various short-term aging conditions. Statistical analysis of the GPC test results indicated that two commonly used short-term aging methods in the laboratory, a 154 °C oven aging for 2 h and a 135 °C oven aging for 4 h, are not significantly different, based on the increase in the large molecular size (LMS) ratios. The RTFO aging method was found to have less effect on binder aging than the short-term oven aging methods of asphalt mixtures.  相似文献   

11.
The dynamic modulus of an asphalt mixture is widely used as an important material property in mechanistic–empirical (ME) pavement design and analysis because it accounts temperature and time-dependent asphalt mixture modulus. The aim of this study is to evaluate the dynamic modulus of asphalt mixtures used in Korea and develop a predictive equation for Korea ME pavement design guide based on the results of dynamic modulus tests. Asphalt mixtures contained a granite aggregate with PG 58-22 and PG 64-22 asphalt binders were tested at five different temperatures (−10, 5, 21, 40, and 55 °C) and six different loading frequencies (0.1, 0.5, 1, 5, 10, and 25 Hz). A predictive equation was constructed based on the test data, and compared and verified between the measured and the predicted dynamic modulus. From the results, it was found that the predictive equation correlated well with the measured values.  相似文献   

12.
To minimize waste tires pollution and improve properties of asphalt mixtures, properties of recycled tire rubber modified asphalt mixtures using dry process are studied in laboratory. Tests of three types asphalt mixtures containing different rubber content (1%, 2% and 3% by weight of total mix) and a control mixture without rubber were conducted. Based on results of rutting tests (60 °C), indirect tensile tests (−10 °C) and variance analysis, the addition of recycled tire rubber in asphalt mixtures using dry process could improve engineering properties of asphalt mixtures, and the rubber content has a significant effect on the performance of resistance to permanent deformation at high temperature and cracking at low temperature.  相似文献   

13.
This paper describes the development of an empirical model which may be used for predicting the G*/sin δ for neat and crumb rubber modified (CRM) binders. The model was developed using 36 unique CRM binder combinations, crumb rubber concentrations were varied at 5% intervals between 5% and 20%. The effects of crumb rubber particle size on model accuracy were also studied, ultimately a model was produced with the capability of predicting G*/sin δ values over a range of temperatures and crumb rubber concentrations. By definition, the upper limit of the performance grade is dependent on the G*/sin δ value; therefore, the relationship was also considered in terms of high end failure temperature.The rubber coefficient for G*/sin δ (Rcg) was identified as an important parameter in the estimation of G*/sin δ in addition to the CRM. This term is a quantitative representation of the increase typically witnessed in G*/sin δ values with the addition of CRM. Ambient ground CRM exhibited higher Rcg values than cryogenically ground particles. Additionally, 95% confidence intervals were generated for the predictive model, thus providing a range of accuracy for the model. The resulting confidence intervals were approximately ±1300 Pa, these confidence intervals were seen to capture 92.6% of the 462 data points used. Findings from this research suggest that the differences between cryogenic and ambient CRM binder are accurately described using the Rcg, furthermore binder properties may be predicted using an empirical equation.  相似文献   

14.
This study investigates the effect of cement additive on some properties of asphalt binder using Superpave testing methods. Six cement-to-asphalt (C/A) ratios were considered in the study: 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30 by volume of asphalt binder. The experimental tests that were conducted in the study included the Superpave rotational viscosity (RV) test and the dynamic shear rheometer (DSR) test. The RV test was conducted at the Superpave-specified high temperature of 135 °C that represents the average mixing and laydown temperature, and at seven different rotational speeds of 5, 10, 20, 30, 50, 60, and 100 rpm. On the other hand, the DSR test was conducted at four test temperatures of 58, 64, 70, and 76 °C; one lower and two higher than the Superpave high performance grade (PG) temperature of the asphalt binder used in the study (PG 64). The loading frequency used in the DSR test was 10 rad/s (1.59 Hz) as specified by the Superpave system. Results of the study showed that the addition of Portland cement to asphalt binders increased the rotational viscosity (RV) of asphalt binders at 135 °C and different rotational speeds. The C/A ratio of 0.15 was found to be the optimum ratio that achieved a balanced increase in the rotational viscosity and the value of the DSR G*/sin δ rutting parameter of asphalt binders. The C/A ratio had insignificant effects on the Newtonian behavior, the phase angle (δ), and the elastic behavior of asphalt binders. The increase in C/A ratio increased the stiffness of asphalt binders represented by the complex shear modulus (G*) value. The increase in the C/A ratio improved the rutting parameter, G*/sin δ value, at all temperatures. The increase in C/A ratio improved the Superpave high PG temperature (the high temperature at which the asphalt binder passed the Superpave criteria for G*/sin δ value). It was also shown that the best function that described the relationship between each of RV, G*, and G*/sin δ and the C/A ratio was the exponential function with high coefficient of determination (R2).  相似文献   

15.
There are many variables of crumb rubber modifier (CRM) and asphalt binder, affecting the interaction of the CRM with the binder when crumb rubber modified binder (CRM binder) is produced. In this study, the influence of the surface area of CRM blends on the high temperature properties, i.e., the complex modulus (G1), the phase angle and high temperature grade of the CRM binders was investigated. To this end, the surface areas of CRM particles were measured using the BET (Brunauer, Emmett and Teller) tester, while weighted average particle size of CRM blends was calculated based on their graduations and then used as a size index. High temperature properties of CRM binders were measured using Dynamic Shear Rheometer (DSR) test. A total of 108 CRM binders were produced using different combinations of these variables. Results observed from this study indicated: (1) the surface area of the ambient CRM was twice as large as that of the cryogenic one, leading to a much higher G1 and phase angle of the CRM binders; (2) the phase angle and G1 were affected by both the surface area and average size; however, the average size is the predominating factor; and (3) ambient CRM binders were produced about 3 °C in high temperature grade higher than cryogenic CRM binders.  相似文献   

16.
The purpose of this study is to evaluate permanent deformation for hydrated lime and SBS modified asphalt mixtures. Control (C), 2% hydrated lime (2L), 5% SBS polymer mixtures and 2%hydrated lime–5%SBS (2L5SBS) mixtures were prepared. The Laboratoire Central des Ponts et Chaussées (LCPC) wheel tracker, also known as French Rutting Tester were realized with two different stages. Same LCPC slabs were produced. Original LCPC compactors and also field cylinder were used separately. LCPC rutting values were determined with left and right wheel loadings. Also averages were obtained with calculation. Repeated creep tests were used for these mixtures and permanent deformations were plotted for two different moisture conditioning that water immersion and freeze and thaw cycles. Diameter samples (100 mm and 150 mm) were studied in repeated creep tests. In the result that LCPC tracking values were compared with repeated creep tests in terms of sample diameters. LCPC wheel-tracking test results show that 2L5SBS mixtures reveal utmost performance according to the other mixtures types. Polymer modification increased rutting resistance of lime modified ones. Both original LCPC compactor and field cylinder compaction showed resemble results. 150 mm samples showed highest correlation (higher than R2 = 0.80) between LCPC test and repeated creep test for different compaction types and different moisture conditionings.  相似文献   

17.
Permeability is one of the most important parameters to quantify the durability of high-performance concrete. Permeability is closely related with the spalling phenomenon in concrete at elevated temperature. This parameter is commonly measured on non-thermally damaged specimens. This paper presents the results of an experimental investigation carried out to study the effect of elevated temperature on the permeability of high-performance concrete. For this purpose, three types of concrete mixtures were prepared: (i) control high-performance concrete; (ii) high-performance concrete incorporating polypropylene fibres; and (iii) high-performance concrete made with lightweight aggregates. A heating–cooling cycle was applied on 160 × 320 mm, 110 × 220 mm, and 150 × 300 mm cylindrical specimens. The maximum test temperature was kept as either 200 or 600 °C. After the thermal treatment, 65 mm thick slices were cut from each cylinder and dried prior to being subjected to permeability test. Results of thermal gradients in the concrete specimens during the heating–cooling cycles, compressive strength, and splitting tensile strength of concrete mixtures are also presented here. A relationship between the thermal damage indicators and permeability is presented.  相似文献   

18.
To improve long-term hydraulic properties of binders from RHA and lime, 25–75% MK was added to RHA. Binders were formulated and properties were compared to that containing RHA or MK as only pozzolans. The lime–pozzolan ratio was 1:3. The properties tested after 7, 28 and 56 days were: absolute density and fineness of the binders, initial setting time, chemical and mineralogical composition of hydrated binders, flexural and compressive strengths and water absorption of mortars. The micrographs of the hardened binder pastes at 56 days permitted to evaluate the densification of different matrixes and the development of pores. From the results obtained, it was concluded that, MK increased the density of mixtures and decreased their grindability. The presence of MK decreased the SiO2 content of binders and increases their Al2O3 and Fe2O3 contents. Calcium-silicate hydrates (CSH) gel and gehlenite (C2ASH8) were the main phases formed during the pozzolanic reaction in the presence of MK. No reduction in flexural and compressive strengths was observed after 28 days for binders containing MK. The mixture of 25% MK and 75% RHA which is recommended gave flexural and compressive strengths higher than binder with RHA or MK as the only pozzolan. Water absorption of mortars was less than 20%.  相似文献   

19.
The objective of this work is to calculate the compressive strength, ultrasound pulse velocity (UPV), relative dynamic modulus of elasticity (RDME) and porosity induced into concrete during freezing and thawing. Freeze–thaw durability of concrete is of great importance to hydraulic structures in cold areas. In this paper, freezing of pore solution in concrete exposed to a freeze–thaw cycle is studied by following the change of concrete some mechanical and physical properties with freezing temperatures. The effects of pumice aggregate (PA) ratios on the high strength concrete (HSC) properties were studied at 28 days. PA replacements of fine aggregate (0–2 mm) were used: 10%, 20%, and 30%. The properties examined included compressive strength, UPV and RDME properties of HSC. Results showed that compressive strength, UPV and RDME of samples were decreased with increase in PA ratios. Test results revealed that HSC was still durable after 100, 200 and 300 cycles of freezing and thawing in accordance with ASTM C666. After 300 cycles, HSC showed a reduction in compressive strength between 6% and 21%, and reduction in RDME up to 16%. For 300 cycles, the porosity was increased up to 12% for HSC with PA. In this paper, feed-forward artificial neural networks (ANNs) techniques are used to model the relative change in compressive strength and relative change in UPV in cyclic thermal loading. Then genetic algorithms are applied in order to determine optimum mix proportions subjected to 300 thermal cycling.  相似文献   

20.
This research was aimed to predict the number of cycles that cause fracture of hot-mix asphalt (HMA) based on the number of cycles at which the slope of accumulated strain switched from decreasing to increasing mode. In addition, the effect of aggregate gradation and temperature on fatigue behaviors of HMA were evaluated.HMA specimens were prepared at optimum asphalt content using the Marshall mix design procedure. The specimens were prepared using crushed limestone aggregate, 60/70 penetration asphalt, and three different aggregate gradations with maximum nominal aggregate size of 12.5, 19.0, and 25.0 mm. Five magnitudes of load (1.5, 2.0, 2.5, 3.0, and 3.5 kN) were evaluated for their effect on fatigue behavior.Constant stress fatigue tests were performed using the Universal Testing Machine (UTM) at 25 °C. Other temperatures (10, 45, and 60 °C) were evaluated at a load of 3.5 kN.The tests results indicated that the slope of accumulated strain continued to decrease until the number of loading cycles approached 44% of the number of cycles that caused fracture of the HMA. Also, the initial stiffness of asphalt mixtures was found to increase as the magnitude of the load applied increased and as the aggregate gradation maximum nominal size decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号