首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 282 毫秒
1.
Graphene layer-encapsulated Ni nanoparticles with diameters between 3 and 10 nm were fabricated by laser ablation techniques and deposited directly on the Si substrate at room temperature. It was found from the field-emission type scanning electron microscopy (FE–SEM) and transmission electron microscopy(TEM) analyses that any carbon nanotubes were not fabricated in the deposited nano-materials. High-resolution TEM observation showed the core-shell structure of Ni–C particles with crystalline nickel core surrounded by graphite-like layers. The X-ray diffraction(XRD) pattern also revealed that nanoparticles embedded in graphene capsules are crystalline nickel. With these Ni–C nanoparticles, we demonstrated the growth of vertically aligned carbon nanotubes with low spatial density on a silicon substrate by thermal CVD.  相似文献   

2.
Vertically aligned carbon nanotubes (CNTs) have been grown on silicon substrates using nickel as the catalyst layer, acetylene as the carbon source, and hydrogen as the carrier gas. The quality of the CNTs has been examined using transmission and scanning electron microscopy and a tip-growth mechanism with an inner tube diameter of 5–8 nm was observed. The effect of plasma hydrogenation as a post-growth treatment was shown to lead to total or partial removal of the nickel seeds from the CNT tips. Using sequential hydrogenation and growth, it has been possible to achieve tree-like nanostructures.  相似文献   

3.
Carbon nanofibers were synthesized at 450-800 °C by the catalytic CVD method using alumina plate-supported nickel as catalyst and acetylene as carbon source. It was found that Ni/alumina catalyst exhibited a large catalytic effect on the growth of carbon nanofibers at the temperatures between 550 and 700 °C. TEM observation revealed that most of the carbon nanofibers synthesized at 550 °C had a coil-like shape, and many thick platelet nanofibers were found in the product at 700 °C. A growth model was proposed to explain the structural diversity of the carbon nanofibers. Although the carbon nanofibers showed low crystallinity, they can be easily graphitized at 2500 °C.  相似文献   

4.
Carbon nanotubes (CNTs) were grown by hot-filament chemical vapour deposition and iron was the catalyst. The aim of this research was to produce aligned CNTs attached to a substrate.For a homogeneous distribution of the catalyst particles on substrate plates various sol–gel mixtures were used containing iron nitrate and tetrabutyltitanate forming an inorganic network. The produced gels were spin-coated on the substrates and after drying a temperature treatment between 650 and 800 °C was applied. For comparison iron nitrate was dissolved in ethanol and spin-casted on the substrate.Parameter variation during hot-filament CVD growth resulted in the formation of different types of nanotubes and also sectors of aligned CNTs were observed. The nanotube types were: double-wall CNTs, multiwall CNTs, bamboo-type CNTs and fishbone carbon nanofibers.  相似文献   

5.
Carbon nanotubes (CNTs) were fabricated by Chemical Vapour Depositon using a C2H2/H2 mixture. They were grown on Si/SiO2 substrate with Fe film as catalyst, deposited using thermal evaporation technique. The aim of this work is to emphasize the role of the Fe catalyst thickness and the C2H2/H2 flow rate ratio to grow vertically aligned CNTs by thermal CVD. In order to investigate these aspects, four Fe metal films with thickness of 2.5, 3.5, 7.5 and 16 nm were deposited on Si/SiO2 substrate and CNTs were grown with different C2H2/H2 flow rate ratios, from 5/95 to 30/70 by thermal CVD at 750 °C. Results showed that CNTs were not vertically aligned with 16 nm catalyst thickness for all flow rate ratios, while CNTs were always vertically aligned for iron thickness less than 3.5 nm and vertically aligned only for a C2H2/H2 flow rate ratio greater than 20/70 for the 7.5 nm catalyst thickness. Morphology and structural information about CNTs and Fe metal clusters were provided by field emission gun-scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). Our results also indicate that for each flow rate ratio exists a critical thickness of iron catalyst under which vertically aligned CNTs are obtained.  相似文献   

6.
K.L. Klein  P.D. Rack  H.M. Meyer 《Carbon》2005,43(9):1857-1863
The influence of catalyst alloy composition on the growth of vertically aligned carbon nanofibers was studied using Cu-Ni thin films. Metals were co-sputtered onto a substrate to form a thin film alloy with a wide compositional gradient, as determined by Auger analysis. Carbon nanofibers were then grown from the gradient catalyst film by plasma enhanced chemical vapor deposition. The alloy composition produced substantial differences in the resulting nanofibers, which varied from branched structures at 81%Ni-19%Cu to high aspect ratio nanocones at 80%Cu-20%Ni. Electron microscopy and spectroscopy techniques also revealed segregation of the initial alloy catalyst particles at certain concentrations.  相似文献   

7.
The synthesis of platelet carbon nanofibers (PCNFs) on a silicon substrate using chemical vapor deposition method is reported. Scanning electron microscope, high-resolution transmission electron microscopy, and Raman spectroscopy were used to characterize the nanofibers. It is found that these platelet nanofibers are of the order of 10 μm long, and most have a nearly rectangular transverse section with several hundreds nm wide and several tens of nm thick. Structure analysis reveals that the carbon layers of platelet nanofibers are parallel to each other, and have a uniform (0 0 2) orientation that is perpendicular to the fiber axis. Many faults and nanodomain have been found in the nanofibers. It is suggested that the PCNF grow in tip growth mechanism by the precipitation of carbon from the side facet of catalyst flakes.  相似文献   

8.
Hybrid silica–carbon nanotube (CNT) particles with a radial symmetry were produced by the growth of nanotubes onto spherical, mesoporous silica gel particles using the floating catalyst chemical vapour deposition (FC-CVD) method. Characterisation of the hybrid particles, using electron microscopy, Raman spectroscopy and thermogravimetry showed the geometry and porosity of the silica particles to influence the alignment and density of the CNTs produced. CNT growth initiated in the pores of the gel particles and three hours of CVD growth were required to get extensive surface coverage. In the early stages of growth, the reactants diffused inside the mesoporous silica and consequently the CNTs grew mainly within the silica gel rather than on the surface. Some indication of catalyst templating was observed within the smaller (<10 nm) pores, but this templating did not result in aligned CNTs. Composite films of hybrid silica–CNT particles in poly(vinyl alcohol) were cast and their impedance measured. An electrical percolation threshold of 0.62 wt.% was found for the hybrid particles, of which 0.20 wt.% were CNTs.  相似文献   

9.
Vertically aligned carbon nanofibers (VACNF) have been synthesized where the crystallographic orientation of the initial catalyst film was preserved in the nanoparticle that remained at the nanofiber tip after growth. A substantial percentage of catalyst particles (75%), amounting to approximately 200 million nanofibers over a 100 mm Si wafer substrate, exhibited a sixfold symmetry attributed to a cubic Ni(1 1 1)∥Si(0 0 1) orientation relationship which was verified by X-ray diffraction studies. The Ni catalyst films were prepared by rf-magnetron sputtering under substrate bias conditions to yield a single (1 1 1) film texture. The total energy of the Ni thin film was estimated by calculating the sum of the surface free energy and strain energy. The total film energy was minimized by the evolution of the plane of lowest surface free energy, the (1 1 1) texture. This result was in agreement with X-ray diffraction measurements. The preferred orientation present in the Ni catalyst film prior to nanofiber growth was preserved in the Ni catalyst particles throughout the VACNF growth process. The Ni catalyst particles at the nanofiber tips were not pure single crystals but rather consisted of a mosaic structure of Ni nanocrystallites embedded within Ni catalyst nanoparticles (200-400 nm). The tip-located nanoparticles exhibited a faceted, crystal morphology with the faceting transferred to the underlying carbon nanofiber during the growth process. The possibility of precisely and accurately controlling VACNF growth velocity over macroscopic wafer dimensions with uniformly aligned catalyst particles is discussed.  相似文献   

10.
Huiyao Wang  John J. Moore 《Carbon》2012,50(3):1235-1242
Using radio frequency-plasma enhanced chemical vapor deposition (RF-PECVD), carbon nanofibers (CNFs) and carbon nanotubes (CNTs) were synthesized at low temperature. Base growth vertical turbostratic CNFs were grown using a sputtered 8 nm Ni thin film catalyst on Si substrates at 140 °C. Tip growth vertical platelet nanofibers were grown using a Ni nanocatalyst in 8 nm Ni films on TiN/Si at 180 °C. Using a Ni catalyst on glass substrate at 180 °C a transformation of the structure from CNFs to CNTs was observed. By adding hydrogen, tip growth vertical multi-walled carbon nanotubes were produced at 180 °C using FeNi nanocatalyst in 8 nm FeNi films on glass substrates. Compared to the most widely used thermal CVD method, in which the synthesis temperature was 400–850 °C, RF-PECVD had a huge advantage in low temperature growth and control of other deposition parameters. Despite significant progress in CNT synthesis by PECVD, the low temperature growth mechanisms are not clearly understood. Here, low temperature growth mechanisms of CNFs and CNTs in RF-PECVD are discussed based on plasma physics and chemistry, catalyst, substrate characteristics, temperature, and type of gas.  相似文献   

11.
Long single crystal ZnO nanofibers were synthesized on a large-scale by a simple solvothermal method at low temperature in the presence of dodecyl benzene sulfonic acid sodium salt and hydrazine. X-ray diffraction, scanning electron microscopy, transmission electron microscopy and high-resolution transmission electron microscopy were used to characterize the product. The diameter of the single crystal nanofiber is 50–70 nm and the length is 30–50 μm. Due to the oxygen or the zinc vacancy in the nanofibers, the wide emission in the visible light region is increased, while the sharp UV emission still exists at 388.5 nm.  相似文献   

12.
We report the realization of graphene nanosheets by means of unzipping carbon nanotubes grown on silicon substrates. The formation of carbon nanotubes is possible with a gas mixture of methane and hydrogen in a direct-current plasma enhanced chemical vapor deposition reactor at a temperature of 700 °C. To avoid the undesired agglomeration of nickel islands as the catalyst layer, a hydrogen-assisted pre-treatment has been used. Vertically aligned CNTs are placed horizontally on a silicon substrate and unzipped using a sequential passivation and etching process in a reactive ion etching unit. A mixture of hydrogen, oxygen and SF6 gases are used to result in proper unzipping of horizontal CNTs. Scanning electron microscopy, transmission electron microscopy, atomic force microscopy and Raman spectroscopy have been exploited to investigate the physical properties of the grown nano-structures. In addition, the composition of the passivation layer has been examined using energy dispersive spectroscopy. Multilayered graphene sheets with a height of 3 nm have been obtained.  相似文献   

13.
Well-crystallized β-SiC nanorods grown on electrospun nanofibers were synthesized by carbothermal reduction of Tb doped SiO2 (SiO2:Tb) nanofibers at 1,250 °C. The as-synthesized SiC nanorods were 100–300 nm in diameter and 2–3 μm in length. Scanning electron microscopy (SEM) results suggested that the growth of the SiC nanorods should be governed by vapor-liquid-solid (VLS) mechanism with Tb metal as catalyst. Tb(NO3)3 particles on the surface of the electrospun nanofibers were decomposed at 500 °C and later reduced to the formation of Tb nanoclusters at 1,200 °C, and finally the formation of a Si–C–Tb ally droplet will stimulate the VLS growth at 1,250 °C. Microstructure of the nanorod was further investigated by transmission electron microscopy (TEM). It was found that SiC <111> is the preferred initial growth direction. The liquid droplet was identified to be Si86Tb14, which acted as effective catalyst. Strong green emissions were observed from the SiC nanorod samples. Four characteristic photoluminescence (PL) peaks of Tb ions were also identified.  相似文献   

14.
Vertical field-aligned carbon nanofibers (CNFs), exhibiting a “herring-bone” and a “bamboo-like” structure, were grown at 560 °C using nickel (Ni) as a catalyst and an innovative radio-frequency (RF) plasma-enhanced chemical vapor deposition system. To limit the carbon supply, thereby providing a highly selective growth process with no detrimental parasitic carbon layer formation, a solid graphite sample-holder, RF-polarized, was used as a single carbon source in combination with a pure H2 feed gas. The morphology and the dimensions of the obtained CNFs are investigated with respect to the growth duration. High-resolution transmission electron microscopy analyses typically display a Ni particle at the fiber tip, but this particle is not encapsulated by graphene layers, allowing its easy removal with a chemical acid treatment. Moreover, the particle’s upper surface consists of a peculiar polycrystalline area, assumed to be essential for the growth mechanisms and possibly made of nickel carbide. The crucial role played by the average vertical electric field, naturally created in the plasma sheath and responsible for sample-holder and substrate bombardment by cationic species, is highlighted to understand the growth mechanisms of these as-grown oriented CNFs and their progressive base destruction by etching phenomena.  相似文献   

15.
Precise arrangement of nanoscale elements within larger systems, is essential to controlling higher order functionality and tailoring nanophase material properties. Here, we present findings on growth conditions for vertically aligned carbon nanofibers that enable synthesis of high density arrays and individual rows of nanofibers, which could be used to form barriers for restricting molecular transport, that have regular spacings and few defects. Growth through plasma-enhanced chemical vapor deposition was initiated from precisely formed nickel catalyst dots of varying diameter and spacing that were patterned through electron beam lithography. Nanofiber growth conditions, including power, precursor gas ratio, growth temperature and pressure were varied to optimize fiber uniformity and minimize defects that result from formation and migration of catalyst particles prior to growth. It was determined that both catalyst dot diameter and initial plasma power have a considerable influence on the number and severity of defects, while growth temperature, gas ratio (C2H2:NH3) and pressure can be varied within a considerable range to fine-tune nanofiber morphology.  相似文献   

16.
J.P. Tu  L.P. Zhu  S.Y. Guo 《Carbon》2003,41(6):1257-1263
Amorphous carbon nanofiber arrays were synthesized in porous anodic aluminum oxide templates by pyrolysis of acetylene with cobalt nanoparticles as catalyst at 640 °C. The carbon nanofibers have amorphous structures under high-resolution transmission electron microscopy and Raman spectroscopy examination. The aligned amorphous carbon nanofibers grown within the pores of the aluminum oxide membranes are uniform with lengths of about 2 μm and outer diameters of about 85 nm. The frictional properties of the array film of amorphous carbon nanofibers were investigated using an atomic force and friction force microscopy (AFM-FFM) and a ball-on-disk machine in air. The adhesion between the amorphous carbon nanofiber arrays and the anodic aluminum oxide membrane remained intact at relatively low loads. The AFM-FFM measurements indicated that the friction forces on the array film of amorphous carbon nanofibers were uniform. The array film had low friction coefficient and high wear resistance under the micro friction tests. The friction coefficient of the array film dry sliding against a corundum counterface was observed to be constant after an initial transient period and decreased with increasing the sliding velocity.  相似文献   

17.
The crystallization of ZnO microrods by hydrothermal treatment of a suspension formed from reaction of zinc acetate and sodium hydroxide has been examined using scanning and transmission electron microscopy. Polycrystalline hexagonal ZnO microrods first appeared after 0.5 h reaction time at 120°C. These early stage rods were composed of stacks of hexagonal layers, each ~50 nm in thickness containing closely aligned assemblies of nanocrystallites <20 nm in size. Further growth of the microrods involved columns of nanoparticles extending from the basal layers of the preformed hexagonal stacks. Re‐crystallization produced single‐crystal microrods, many of which existed as twin particles.  相似文献   

18.
Amorphous carbon films and diamond-like carbon films were grown by pulsed laser deposition (PLD) using different laser wavelengths (λ=193, 532 and 1064 nm) and substrate temperatures (ranging from room temperature to 500 °C). The morphology of the film surface was observed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The mechanisms of film growth using laser wavelengths of 1064, 532 and 193 nm are explained qualitatively to be surface growth, subsurface growth accompanied with migration of the penetrating species to the film surface, and subsurface growth, respectively, using the subplantation model.  相似文献   

19.
The use of graphene layer encapsulated catalytic metal particles for the growth of narrower multi-walled carbon nanotubes (MWCNTs) has been studied using plasma-enhanced chemical vapor deposition and conventional thermal CVD. Ni–C or Fe–C composite nanoclusters were fabricated using the dc arc discharge technique with metal–graphite composite electrodes carrying a current of 100–200 A in a stainless-steel chamber filled with He and CH4 mixture gas at 27 kPa. Nano-sized grains with diameters less than 10 nm were fabricated and deposited on a Si substrate, and were used as a catalyst for MWCNT growth. Structural analyses of the composite nanoclusters and MWCNTs were carried out using transmission electron microscopy. The results show that the diameters of the MWCNTs were reduced from 50–100 nm for a conventional Ni thin film-evaporated Si substrate to a minimum of roughly 2–4 nm in the present study.  相似文献   

20.
Ultrafine particles or nanoparticles (ranging from a few nanometers to 100 nm) are of considerable interest for a wide variety of applications, ranking from catalyst to luminescence ceramics, due to their unique and improved properties primarily determined by size, composition and structure. This study presents the preparation and characterization of nanostructured spherical alumina particles by the Spray Pyrolysis method for the application in reinforcements of metal-matrix composites (MMCs). Synthesis procedure includes aerosol formation ultrasonically from alumina nitrate water solution and its decomposition into a tubular flow reactor at 700 °C. The obtained particles are spherical, smooth, amorphous and in non-agglomerated state. Microstructural and morphological analyses were carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM/EDS) and analytical and high resolution transmission electron microscopy (TEM/HRTEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号