首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the resonant rotation of co-orbital bodies in eccentric and planar orbits. We develop a simple analytical model to study the impact of the eccentricity and orbital perturbations on the spin dynamics. This model is relevant in the entire domain of horseshoe and tadpole orbit, for moderate eccentricities. We show that there are three different families of spin–orbit resonances, one depending on the eccentricity, one depending on the orbital libration frequency, and another depending on the pericenter’s dynamics. We can estimate the width and the location of the different resonant islands in the phase space, predicting which are the more likely to capture the spin of the rotating body. In some regions of the phase space the resonant islands may overlap, giving rise to chaotic rotation.  相似文献   

2.
We have applied an eccentric accretion disc theory in simplified form to the case of an accretion disc in a binary system, where the disc contains the 3:1 Lindblad resonance. This is relevant to the case of superhumps in SU Ursae Majoris cataclysmic variables and other systems, where it is thought that this resonance leads to growth of eccentricity and a modulation in the light curve due to the interaction of a precessing eccentric disc with tidal stresses. A single differential equation is formulated which describes the propagation, resonant excitation and viscous damping of eccentricity. The theory is first worked out in the simple case of a narrow ring and leads to the conclusion that the eccentricity distribution is locally suppressed by the presence of the resonance, creating a dip in the eccentricity at the resonant radius. Application of this theory to the superhump case confirms this conclusion and produces a more accurate expression for the precession rate of the disc than has been previously accomplished with simple dynamical estimates.  相似文献   

3.
Situations arise in celestial mechanics where orbital eccentricities are large and yet it is desirable to maintain the Darwin-Kaula Fourier decomposition of the perturbing function. Evaluation of the appropriate eccentricity functionsG lpq (e) requires a double summation which, for practical purposes, must be truncated. In this note criteria have been established for truncation of the expansion for eccentricities 0.75.  相似文献   

4.
An analytical model that describes the evolution of ring particles that are co-orbital with two larger bodies on near-circular and near-planar orbits has been formulated. This can be used to estimate the lifetime of the particles within the ring. All the examples investigated, such as the Janus-Epimetheus (JE) system, indicate that the particles should be removed from the co-orbital region within half a synodic period (∼4 years for JE). Numerical modelling confirms the predictions of the model. When the masses are on eccentric orbits the particles remain within the co-orbital system for longer. Our results suggest that the ring associated with Janus and Epimetheus must be continually fed with material, probably by meteoroid impacts on the two satellites.  相似文献   

5.
6.
We consider the coplanar planetary four-body problem, where three planets orbit a large star without the cross of their orbits. The system is stable if there is no exchange or cross of orbits. Starting from the Sundman inequality, the equation of the kinematical boundaries is derived. We discuss a reasonable situation, where two planets with known orbits are more massive than the third one. The boundaries of possible motions are controlled by the parameter c~2E. If the actual value of c~2E is less than or equal to a critical value(c~2 E)cr, then the regions of possible motions are bounded and therefore the system is stable.The criteria obtained in special cases are applied to the Solar System and the currently known extrasolar planetary systems. Our results are checked using N-body integrator.  相似文献   

7.
8.
The brightness oscillations of a sunspot umbra in the H and Ca+ K lines are studied. The observational results are explained in terms of the resonance theory of slow-mode magnetohydrodynamic waves in the sunspot chromosphere. The thickness of the chromosphere above a sunspot varies quasi-periodically from 420 km to 1000 km.  相似文献   

9.
In this note a simple formula is given for the perturbation of the anomalistic period of a highly eccentric orbit due to the zonal harmonics. This perturbation depends essentially only on the semi-major axisa, the eccentricitye (or pericentre radius r =a(1-e)) and the latitude of the pericentre.  相似文献   

10.
A new conceptual framework for the foundations of statistical mechanics starting from dynamics is presented. It is based on the classification and the study of invariants in terms of the concepts of our formulation of non-equilibrium statistical mechanics. A central role is played by thecollision operator. The asymptotic behaviour of a class of states is determined by the collisional invariants independently of the ergodicity of the system. For this class of states we have an approach to thermodynamical equilibrium. We discuss the existence of classes of states which approach equilibrium. The complex microstructure of the phase space, as expressed by the weak stability concept which was introduced by Moser and others, plays here an essential role. The formalism that we develop is meaningful whenever the “dissipativity condition” for the collision operator is satisfied. Assuming the possibility of a weak coupling approximation, this is in fact true whenever Poincaré's theorem on the nonexistence of uniform invariants holds. In this respect, our formalism applies to few body problems and no transition to the thermodynamic limit is required. Our approach leads naturally to a ‘classical theory of measurement’. In particular a precise meaning can now be given to ‘thermodynamic variables’ or to ‘macrovariables’ corresponding to a measurement in classical dynamics.  相似文献   

11.
Possible rotation states of two satellites of Saturn, Prometheus (S16) and Pandora (S17), are studied by means of numerical experiments. The attitude stability of all possible modes of synchronous rotation and the motion close to these modes is analyzed by means of computation of the Lyapunov spectra of the motion. The stability analysis confirms that the rotation of Prometheus and Pandora might be chaotic, though the possibility of regular behaviour is not excluded. For the both satellites, the attitude instability zones form series of concentric belts enclosing the main synchronous resonance center in the phase space sections. A hypothesis is put forward that these belts might form “barriers” for capturing the satellites in synchronous rotation. The satellites in chaotic rotation can mimic ordinary regular synchronous behaviour: they preserve preferred orientation for long periods of time, the largest axis of satellite’s figure being directed approximately towards Saturn.  相似文献   

12.
This study is concerned with the stability of motion of the circumbinary exoplanet Kepler-413b. The analysis is performed within the framework of a flat restricted three-body problem. The stability diagram is plotted in the plane of initial conditions “pericentric distance—eccentricity” using mass calculations of Lyapunov exponents. According to the diagram, the Kepler-413b planet is located in a stable resonance cell, confined by the mean-motion resonances 6: 1 and 7: 1 with a central binary star, which agrees with the conclusions of Kostov et al. (2014) based on calculations of the MEGNO parameter. It is shown that the value of the critical semimajor axis acquired from the empirical formula of Holman and Wiegert (1999) almost coincides with the value obtained directly from the stability diagram; at low and moderate eccentricities of the planetary orbit, the position of the calculated boundary of the chaos zone is in close agreement with the boundary predicted by Shevchenko’s theory (2015). If the planet were in the instability zone, its characteristic Lyapunov time would be only ~1 year. In accordance with the conclusions of Kostov et al. (2014), it has been shown that the planet Kepler-413b is outside the habitability zone of the system.  相似文献   

13.
Attitude dynamics of perturbed triaxial rigid bodies is a rather involved problem, due to the presence of elliptic functions even in the Euler equations for the free rotation of a triaxial rigid body. With the solution of the Euler–Poinsot problem, that will be taken as the unperturbed part, we expand the perturbation in Fourier series, which coefficients are rational functions of the Jacobian nome. These series converge very fast, and thus, with only few terms a good approximation is obtained. Once the expansion is performed, it is possible to apply to it a Lie-transformation. An application to a tri-axial rigid body moving in a Keplerian orbit is made.  相似文献   

14.
The NGC 5044 galaxy group is dominated by a luminous elliptical galaxy that is surrounded by ∼160 dwarf satellites. The projected number density profile of this dwarf population deviates within ∼1/3 of the virial radius from a projected Navarro, Frenk and White (NFW) profile, which is assumed to approximate the underlying total matter distribution. By means of a semi-analytic model, we demonstrate that the interplay between gravitation, dynamical friction and tidal mass loss and destruction can explain the observed number density profile. We use only two parameters in our models: the total to stellar mass fraction of the satellite haloes and the disruption efficiency. The disruption efficiency is expressed by a minimum radius. If the tidal radius of a galaxy (halo) falls below this radius, it is assumed to become unobservable. The preferred parameters are an initial total to stellar mass fraction of ∼20 and a disruption radius of  4 kpc  . In that model, about 20 per cent of all the satellites are totally disrupted on their orbits within the group environment. Dynamical friction is less important in shaping the inner slope of the number density profile because the reduction in mass by tidal forces lowers the impact of the friction term. The main destruction mechanism is tide. In the preferred model, the total B -band luminosity of all disrupted galaxies is about twice the observed luminosity of the central elliptical galaxy, indicating that a significant fraction of stars are scattered into the intragroup medium. Dwarf galaxy satellites closer to the centre of the NGC 5044 group may exhibit optical evidence of partial tidal disruption. If dynamical friction forces the satellite to merge with the central elliptical, the angular momentum of the satellite tends to be removed at the apocentre passage. Afterwards, the satellite drops radially towards the centre.  相似文献   

15.
On the equations of the dynamics of the attracting point masses  相似文献   

16.
17.
The c2H condition for determining the Hill stability of coplanar three-body systems is analysed for the particular situation where the primary mass is much greater than the other two. It is found that in this event the criterion can be expressed in a closed form. This is applied to three-body subsets of the Solar System.  相似文献   

18.
This paper studies the relative orbital motion between arbitrary Keplerian trajectories. A closed-form vectorial solution to the nonlinear initial value problem that models this type of motion with respect to a noninertial reference frame is offered. Without imposing any particular conditions on the leader or the deputy satellites trajectories, exact expressions for the relative law of motion and relative velocity are obtained in a closed form. This solution allows the parameterization of the relative motion manifold and offers new methods to study its geometrical and topological properties. The result presented in this paper opens the way to obtain new classes of approximate solutions to the equations of relative motion with time, an eccentric or true anomaly as independent variables. Published in Russian in Solar System Research, 2009, Vol. 43, No. 1, pp. 44–55. The text was submitted by the autors in English.  相似文献   

19.
The chaotic orbital dynamics of the planet in the wide visual binary star system 16 Cyg is considered. The only planet in this system has a significant orbital eccentricity, e = 0.69. Previously, Holman et al. suggested the possibility of chaos in the orbital dynamics of the planet due to the proximity of 16 Cyg to the separatrix of the Lidov–Kozai resonance. We have calculated the Lyapunov characteristic exponents on the set of possible orbital parameters for the planet. In all cases, the dynamics of 16 Cyg is regular with a Lyapunov time of more than 30 000 yr. The dynamics is considered in detail for several possible models of the planetary orbit; the dependences of Lyapunov exponents on the time of their calculation and the time dependences of osculating orbital elements have been constructed. Phase space sections for the system dynamics near the Lidov–Kozai resonance have been constructed for all models. A chaotic behavior in the orbital motion of the planet in 16 Cyg is shown to be unlikely, because 16 Cyg in phase space is far from the separatrix of the Lidov–Kozai resonance at admissible orbital parameters, with the chaotic layer near the separatrix being very narrow.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号