首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Improving the electrocatalytic activity and durability of Pt‐based catalysts with low Pt content toward the oxygen reduction reaction (ORR) is one of the main challenges in advancing the performance of polymer electrolyte membrane fuel cells (PEMFCs). Herein, a designed synthesis of well‐defined Pd@Pt core–shell nanoparticles (NPs) with a controlled Pt shell thickness of 0.4–1.2 nm by a facile wet chemical method and their electrocatalytic performances for ORR as a function of shell thickness are reported. Pd@Pt NPs with predetermined structural parameters were prepared by in situ heteroepitaxial growth of Pt on as‐synthesized 6 nm Pd NPs without any sacrificial layers and intermediate workup processes, and thus the synthetic procedure for the production of Pd@Pt NPs with well‐defined sizes and shell thicknesses is greatly simplified. The Pt shell thickness could be precisely controlled by adjusting the molar ratio of Pt to Pd. The ORR performance of the Pd@Pt NPs strongly depended on the thickness of their Pt shells. The Pd@Pt NPs with 0.94 nm Pt shells exhibited enhanced specific activity and higher durability compared to other Pd@Pt NPs and commercial Pt/C catalysts. Testing Pd@Pt NPs with 0.94 nm Pt shells in a membrane electrode assembly revealed a single‐cell performance comparable with that of the Pt/C catalyst despite their lower Pt content, that is the present NP catalysts can facilitate low‐cost and high‐efficient applications of PEMFCs.  相似文献   

2.
The development of superior non‐platinum electrocatalysts for enhancing the electrocatalytic activity and stability for the oxygen‐reduction reaction (ORR) and liquid fuel oxidation reaction is very important for the commercialization of fuel cells, but still a great challenge. Herein, we demonstrate a new colloidal chemistry technique for making structurally ordered PdCu‐based nanoparticles (NPs) with composition control from PdCu to PdCuNi and PtCuCo. Under the dual tuning on the composition and intermetallic phase, the ordered PdCuCo NPs exhibit better activity and much enhanced stability for ORR and ethanol‐oxidation reaction (EOR) than those of disordered PdCuM NPs, the commercial Pt/C and Pd/C catalysts. The density functional theory (DFT) calculations reveal that the improved ORR activity on the PdCuM NPs stems from the catalytically active hollow sites arising from the ligand effect and the compressive strain on the Pd surface owing to the smaller atomic size of Cu, Co, and Ni.  相似文献   

3.
杜诚  高小惠  陈卫 《催化学报》2016,(7):1049-1061
面对日益严重的全球能源危机,燃料电池作为一种清洁的能源转换装置在全世界范围内得到了广泛关注。燃料电池是一种能够使氢气、甲醇、甲酸和乙醇等小分子燃料和氧气发生氧化还原反应,并将其化学能转换为电能的新型装置。在燃料电池中,由于在阴极发生的氧气还原反应动力学速率缓慢而使得燃料电池的整体转换效率过低,目前商用的燃料电池一般采用贵金属铂作为催化剂来加速其反应。但由于铂的价格高昂且在反应过程中易被反应中间产物毒化而活性下降,使得燃料电池的整体成本过高,从而阻碍了燃料电池的实际商业化。为此,人们尝试利用非贵金属催化剂来替代铂基催化剂。找到一种廉价且高效的氧还原催化剂是目前燃料电池发展急需打破的瓶颈问题之一。近年来,人们发现铁、钴、锰等地表储量丰富的金属元素具有较高的氧还原催化活性。然而,作为一种最常见的金属元素,金属铜在氧还原催化剂方面研究较少。人们发现一些生物酶,如虫漆酶、细胞色素c氧化酶等能够高效地催化氧气还原,如虫漆酶在催化氧还原过程中仅表现出约20 mV的过电位,与金属铂(约200 mV)相比基本可忽略。通过研究这些活性生物酶,人们发现其活性中心均为含Cu的物质。进一步研究这些生物酶的活性位点,然后合成不同的铜基纳米材料去模拟酶的活性位点,以期望能够实现经济、高效催化氧还原反应。
  本文总结了基于铜的纳米材料在催化氧还原方面的研究进展,首先介绍了一些氧还原实验测试中的基本概念,主要包括不同电解质条件下氧还原的反应机理以及常用的测试手段和性能评价指标。氧还原催化剂的性能应该综合活性、稳定性、抗毒化能力以及催化剂成本等多个方面来评价与比较。随后,我们概括性地介绍了铜基氧还原催化剂的发展现状。根据铜基催化剂的不同类型,我们主要分为三个部分进行介绍:(1)铜的复合物,这部分主要从模拟虫漆酶和模拟细胞色素c氧化酶两个方面分类介绍;(2)铜的化合物,这部分主要介绍了不同价态的铜的氧化物和铜的硫化物;(3)其它铜基催化剂,这部分主要介绍基于铜的尖晶石结构、有机框架材料及载体负载的铜纳米粒子作为氧还原催化剂,以及铜作为掺杂元素在提高锰的不同氧化物催化活性中的作用。最后,通过综合分析铜基氧还原催化剂的发展历程以及目前燃料电池的研究进展,我们对基于铜的氧还原催化剂的未来发展方向做了一些展望。继续研究、探索酶的氧还原活性位点以及机理依然是重中之重,只有完全理解了酶的催化机理,才能够很好的设计并合成材料来对其活性位点进行模拟,从而制备出高性能且低成本的铜基氧还原催化剂。希望本文能够使读者认识到燃料电池氧还原催化剂的发展现况,以及铜基氧还原催化剂目前存在的问题及其未来的发展方向。  相似文献   

4.
In recent years, various non‐precious metal electrocatalysts for the oxygen reduction reaction (ORR) have been extensively investigated. The development of an efficient and simple method to synthesize non‐precious metal catalysts with ORR activity superior to that of Pt is extremely significant for large‐scale applications of fuel cells. Here, we develop a facile, low‐cost, and large‐scale synthesis method for uniform nitrogen‐doped (N‐doped) bamboo‐like CNTs (NBCNT) with Co nanoparticles encapsulated at the tips by annealing a mixture of cobalt acetate and melamine. The uniform NBCNT shows better ORR catalytic activity and higher stability in alkaline solutions as compared with commercial Pt/C and comparable catalytic activity to Pt/C in acidic media. NBCNTs exhibit outstanding ORR catalytic activity due to high defect density, uniform bamboo‐like structure, and the synergistic effect between the Co nanoparticles and protective graphitic layers. This facile method to synthesize catalysts, which is amenable to the large‐scale commercialization of fuel cells, will open a new avenue for the development of low‐cost and high‐performance ORR catalysts to replace Pt‐based catalysts for applications in energy conversion.  相似文献   

5.
Polymer stabilization proved to be a promising approach to increase the catalytic performance of common platinum/carbon based cathode catalysts (Pt/C) used in polymer electrolyte membrane fuel cells (PEMFCs). Platinum and polyaniline composite catalysts (Pt/C/PANI) were prepared by combining chemical polymerization reactions with anion exchange reactions. Electrochemical ex-situ characterizations of the decorated Pt/C/PANI catalysts show high catalytic activity toward the oxygen reduction reaction (ORR) and, more importantly, a significant enhanced durability compared to the undecorated Pt/C catalyst. Transmission electron microscopy (TEM) investigations reveal structural benefits of Pt/C/PANI for ORR catalysis. All studies confirm high potential of Pt/C/PANI for practical fuel cell application.  相似文献   

6.
In proton exchange membrane fuel cells, platinum (Pt) has been the dominant choice for both the cathode and the anode catalysts. The high Pt content and high associated costs particularly at the cathode, and sluggish oxygen reduction reaction (ORR) kinetics and poor stability, remain a challenge. Pt monolayer (ML) catalysts offer a distinctively reduced Pt content while providing considerable possibilities for enhancing their catalytic activity and stability for the ORR. In this opinion, we first review the achievement in active and stable Pt ML on palladium (Pd) nanoparticle catalysts for the ORR. We then describe the mechanisms that rationalize their high activity and durability. Recently, we developed several novel nanostructured cores to further improve the ORR activity and stability by optimizing their surface orientation, composition, and morphology. The results from the Pt ML catalysts significantly impact the research of electrocatalysis and fuel-cell technology, as they demonstrate an exceptionally effective way of design and syntheses of catalysts.  相似文献   

7.
8.
During the last few decades organometallic methodologies have generated a number of highly effective electrocatalyst systems based on mono‐ and bimetallic nanosparticles having controlled size, composition and structure. In this microreview we summarize our results in fuel cell catalyst preparation applying triorganohydroborate chemistry, ‘reductive particle stabilization’ using organoaluminum compounds, and the controlled decomposition of organometallic complexes. The advantages of organometallic catalyst preparation pathways are exemplified with Ru? Pt nanoparticles@C as promising anode catalysts to be used in direct methanol oxidation fuel cells (DMFC) or in polymer electrolyte fuel cells (PEMFC) running with CO‐contaminated H2 as the feed. Recent findings with highly efficient PtCo3@C fuel cell catalysts applied for the oxygen reduction reaction (ORR) and with the effect of Se‐doping on Ru@C ORR catalysts clearly demonstrate the benefits of organometallic catalyst synthesis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Platinum nanoparticles (Pt NPs) on carbon black (CB) have been used as catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells for a while. However, this catalyst has suffered from aggregation and dissolution of Pt NPs as well as CB dissolution. In this study, we resolve those issues by developing perfluorosulfonic acid (PFSA)-functionalized Pt/graphene as a high-performance ORR catalyst. The noncovalently bonded PFSA remarkably decreases the dissolution and aggregation of Pt NPs. Moreover, unlike typical NP functionalization with other capping agents, PFSA is a proton conductor and thus efficiently develops a triple-phase boundary. These advantageous features are reflected in the improved cell performance in electrochemical active surface area, catalytic activity, and long-term durability, compared to those of the commercial Pt/C catalysts and graphene-based catalysts with no such treatment.  相似文献   

10.
Single Fe atoms dispersed on hierarchically structured porous carbon (SA‐Fe‐HPC) frameworks are prepared by pyrolysis of unsubstituted phthalocyanine/iron phthalocyanine complexes confined within micropores of the porous carbon support. The single‐atom Fe catalysts have a well‐defined atomic dispersion of Fe atoms coordinated by N ligands on the 3D hierarchically porous carbon support. These SA‐Fe‐HPC catalysts are comparable to the commercial Pt/C electrode even in acidic electrolytes for oxygen reduction reaction (ORR) in terms of the ORR activity (E1/2=0.81 V), but have better long‐term electrochemical stability (7 mV negative shift after 3000 potential cycles) and fuel selectivity. In alkaline media, the SA‐Fe‐HPC catalysts outperform the commercial Pt/C electrode in ORR activity (E1/2=0.89 V), fuel selectivity, and long‐term stability (1 mV negative shift after 3000 potential cycles). Thus, these nSA‐Fe‐HPCs are promising non‐platinum‐group metal ORR catalysts for fuel‐cell technologies.  相似文献   

11.
The development of nonprecious catalyst for oxygen reduction reaction (ORR) is important for the commercialization of the alkaline fuel cells (AFCs). Herein, we prepared a kind of Co-based nanoparticles (NPs) with a core-shell (Co@CoO) structure supported on the N-doped graphene (Co@CoO/NG) as an efficient ORR catalyst via simply pyrolyzing the ZIF-67 anchored on the synthesized graphene oxide (GO). The catalytic activity for ORR of the obtained Co@CoO/NG is comparable with the state-of-art Pt/C catalyst in terms of the onset and half-wave potential in the alkaline solution. In addition, the Co@CoO/NG exhibited an excellent ORR durability and antimethanol activity compared to the commercial Pt/C. This research would provide a simple strategy to prepare the high-performance nonprecious metal-based catalysts for AFCs.  相似文献   

12.
The development of methanol-tolerate oxygen reduction reaction(ORR) electrocatalysts is of special significance to direct methanol fuel cells system. Iridium is known for its better methanol tolerance than platinum and able to survive in harsh acidic environment. However, its activity is relatively low and thus the approach to improve Ir's ORR is desired. Herein, bimetallic Ir-Cu nanoparticles(NPs) with controllable Ir/Cu compositions(ca. 1:2 to 4:1, atomic ratio) are synthesized via a galvanic replacement-based chemical method. The as-synthesized Ir-Cu NPs are investigated as ORR catalysts after electrochemically leaching out the surface Cu and forming Ir-skinned structures. Around 2- to 3-fold enhancement in the intrinsic activity has been observed in these Ir-skinned Ir-Cu catalysts compared to Ir counterpart. The approach is demonstrated to be a promising way to prepare efficient Ir ORR catalysts and lower catalyst cost.  相似文献   

13.
The chemical dealloying mechanism of bimetallic Pt–Co nanoparticles (NPs) and enhancement of their electrocatalytic activity towards the oxygen reduction reaction (ORR) have been investigated on a fundamental level by the combination of X‐ray absorption spectroscopy (XAS) and aberration‐corrected scanning transmission electron microscopy (STEM). Structural parameters, such as coordination numbers, alloy extent, and the unfilled d states of Pt atoms, are derived from the XAS spectra, together with the compositional variation analyzed by line‐scanning energy‐dispersive X‐ray spectroscopy (EDX) on an atomic scale, to gain new insights into the dealloying process of bimetallic Pt–Co NPs. The XAS results on acid‐treated Pt–Co/C NPs reveal that the Co–Co bonding in the bimetallic NPs dissolves first and the remaining morphology gradually transforms to a Pt‐skin structure. From cyclic voltammetry and mass activity measurements, Pt–Co alloy NPs with a Pt‐skin structure significantly enhance the catalytic performance towards the ORR. Further, it is observed that such an imperfect Pt‐skin surface feature will collapse due to the penetration of electrolyte into layers underneath and cause further dissolution of Co and the loss of Pt. The electrocatalytic activity decreases accordingly, if the dealloying process lasts for 4 h. The findings not only demonstrate the importance of appropriate treatment of bimetallic catalysts, but also can be referred to other Pt bimetallic alloys with transition metals.  相似文献   

14.
The high cost of platinum electrocatalysts for the oxygen reduction reaction (ORR) has hindered the commercialization of fuel cells. An effective support can reduce the usage of Pt and improve the reactivity of Pt through synergistic effects. Herein, the vanadium nitride/graphitic carbon (VN/GC) nanocomposites, which act as an enhanced carrier of Pt nanoparticles (NPs) towards ORR, have been synthesized for the first time. In the synthesis, the VN/GC composite could be obtained by introducing VO3? and [Fe(CN)6]4? ions into the polyacrylic weak‐acid anion‐exchanged resin (PWAR) through an in‐situ anion‐exchanged route, followed by carbonization and a subsequent nitridation process. After loading only 10 % Pt NPs, the resulting Pt‐VN/GC catalyst demonstrates a more positive onset potential (1.01 V), higher mass activity (137.2 mA mg?1), and better cyclic stability (99 % electrochemical active surface area (ECSA) retention after 2000 cycles) towards ORR than the commercial 20 % Pt/C. Importantly, the Pt‐VN/GC catalyst mainly exhibits a 4 e?‐transfer mechanism and a low yield of peroxide species, suggesting its potential application as a low‐cost and highly efficient ORR catalyst in fuel cells.  相似文献   

15.
燃料电池可以在接近室温条件下将氢或烃类中蕴含的巨大化学能通过电化学途径直接转化为清洁、稳定、可持续的电能,因而被视为极有前景的、能够满足日益增长的世界能源需求的终极解决方案之一.在一个典型的氢燃料电池中,氢在正极氧化而氧在负极还原,从动力学角度说,氧还原反应(ORR)比氢氧化反应进行的慢得多.无论是在酸性还是碱性条件下,氧的还原都可以一个四电子过程或是两个双电子过程进行,当然在酸性和碱性环境中反应的机理不同.铂一直是最有效的ORR催化剂,但受到价格昂贵、稳定性差和易中毒等因素的制约,目前非铂催化剂成为越来越引人瞩目的发展方向.本综述试图从分子催化剂、金属纳米材料催化剂、金属氧化物催化剂和新兴的二维材料催化剂等方面,选取近十年来最能代表ORR电化学催化剂方面成就的例子分析其优缺点,并为今后该领域的研究提供一些有益的思路.典型的分子催化剂是卟啉类化合物,当这种四齿的N4配体与过渡金属特别是铁、钴络合时,往往显示出良好的ORR催化性能,多数情况下其中的过渡金属中心、配体和碳支撑体系共同组成催化剂的活性中心.在另一些报道中,邻菲罗啉或是连吡啶型N2化合物也可以作为配体使用.第四和第五副族的很多金属形成的不同价态的氧化物都具有氧还原活性,比如MnOx,CoOx,TiOx,ZrOx,IrOx等.金属氧化物表现出易于修饰,不容易团聚和抗腐蚀等诸多优点,而其良好的ORR性能与表面的缺陷密切相关,因此钙钛矿型氧化物ABOx也引起人们的广泛关注,人们可以通过调节氧化物的晶型、尺寸和组成来获得更好的催化性能.近年来随着液相合成技术的发展,人们可以制备出理想形状和尺寸的单分散纳米粒子,然后通过旋涂、自组装等手段将其修饰到合适的电极上以获得增强性能的ORR催化剂.通过形状与尺寸调控,或组合成其它复杂的纳米结构,都有可能提高催化活性或是稳定性,因此有关纳米催化剂的研究日趋增多.在此基础上,考虑到石墨烯的可修饰性和良好的电化学性能,纳米材料复合石墨烯所形成的二维或三维结构也可提供很好的氧还原催化性能,而MoS2代替石墨烯作为支撑物所构成的二维催化剂也是值得注意的研究方向.综上所述,尽管现有的非铂催化剂仍难以完全满足商业化的要求,设计理念和合成方法的快速发展有望在不远的将来解决这一难题.而设计合成可控尺寸、形状、组成和表面形貌的纳米催化剂在很大程度上将加速这一进程.  相似文献   

16.
Despite tremendous progress in developing doped carbocatalysts for the oxygen reduction reaction (ORR), the ORR activity of current metal‐free carbocatalysts is still inferior to that of conventional Pt/C catalysts, especially in acidic media and neutral solution. Moreover, it also remains a challenge to develop an effective and scalable method for the synthesis of metal‐free carbocatalysts. Herein, we have developed nitrogen and phosphorus dual‐doped hierarchical porous carbon foams (HP‐NPCs) as efficient metal‐free electrocatalysts for ORR. The HP‐NPCs were prepared for the first time by copyrolyzing nitrogen‐ and phosphorus‐containing precursors and poly(vinyl alcohol)/polystyrene (PVA/PS) hydrogel composites as in situ templates. Remarkably, the resulting HP‐NPCs possess controllable nitrogen and phosphorus content, high surface area, and a hierarchical interconnected macro‐/mesoporous structure. In studying the effects of the HP‐NPCs on the ORR, we found that the as‐prepared HP‐NPC materials exhibited not only excellent catalytic activity for ORR in basic, neutral, and acidic media, but also much better tolerance for methanol oxidation and much higher stability than the commercial, state‐of‐the‐art Pt/C catalysts. Because of all these outstanding features, it is expected that the HP‐NPC material will be a very suitable catalyst for next‐generation fuel cells and lithium–air batteries. In addition, the novel synthetic method described here might be extended to the preparation of many other kinds of hierarchical porous carbon materials or porous carbon that contains metal oxide for wide applications including energy storage, catalysis, and electrocatalysis.  相似文献   

17.
High oxygen reduction (ORR) activity has been for many years considered as the key to many energy applications. Herein, by combining theory and experiment we prepare Pt nanoparticles with optimal size for the efficient ORR in proton‐exchange‐membrane fuel cells. Optimal nanoparticle sizes are predicted near 1, 2, and 3 nm by computational screening. To corroborate our computational results, we have addressed the challenge of approximately 1 nm sized Pt nanoparticle synthesis with a metal–organic framework (MOF) template approach. The electrocatalyst was characterized by HR‐TEM, XPS, and its ORR activity was measured using a rotating disk electrode setup. The observed mass activities (0.87±0.14 A mgPt?1) are close to the computational prediction (0.99 A mgPt?1). We report the highest to date mass activity among pure Pt catalysts for the ORR within similar size range. The specific and mass activities are twice as high as the Tanaka commercial Pt/C catalysis.  相似文献   

18.
Fuel cells are one of the most promising clean energy devices to substitute for fossil fuel in the future to alleviate energy crisis and environmental pollution.As the key reaction on the cathode in the fuel cells,oxygen reduction reaction(ORR)still requires efficient noble metal catalysts such as the comme rcial Pt/C to boost the reaction for its sluggish kinetics.Therefore,it is critical to design earth-abundant carbonbased catalysts with high efficiency and long-term stability to replace the noble metal-based catalysts.This review focuses on the recent progress about carbon-based ORR catalysts including non-metal doped carbon materials,transition metal-nitrogen-carbon species,transition metal carbides/carbon,single atom catalysts,and other carbon hybrids.And we further infer that the excellent ORR performances can be achieved by the balance of geometric and electronic structures of catalysts such as conductivity,surface area,hierarchical porous structure,defect and doping effect.Additionally,the perspective development trend is also proposed to guide the rational designation of carbon-based catalysts for ORR and even extend to other energy storage and conversion fields in the future.  相似文献   

19.
The sluggish kinetics of the oxygen reduction reaction (ORR) at the cathodes of fuel cells significantly hampers fuel cell performance. Therefore, the development of high‐performance, non‐precious‐metal catalysts as alternatives to noble metal Pt‐based ORR electrocatalysts is highly desirable for the large‐scale commercialization of fuel cells. TiO2‐grafted copper complexes deposited on multiwalled carbon nanotubes (CNTs) form stable and efficient electrocatalysts for the ORR. The optimized catalyst composite CNTs@TiO2–ZA–[Cu(phen)(BTC)] shows surprisingly high selectivity for the 4 e? reduction of O2 to water (approximately 97 %) in alkaline solution with an onset potential of 0.988 V vs. RHE, and demonstrates superior stability and excellent tolerance for the methanol crossover effect in comparison to a commercial Pt/C catalyst. The copper complexes were grafted onto the surface of TiO2 through coordination of an imidazole‐containing ligand, zoledronic acid (ZA), which binds to TiO2 through its bis‐phosphoric acid anchoring group. Rational optimization of the copper catalyst’s ORR performance was achieved by using an electron‐deficient ligand, 5‐nitro‐1,10‐phenanthroline (phen), and bridging benzene‐1,3,5‐tricarboxylate (BTC). This facile approach to the assembly of copper catalysts on TiO2 with rationally tuned ORR activity will have significant implications for the development of high‐performance, non‐precious‐metal ORR catalysts.  相似文献   

20.
Developing new synthetic methods for carbon supported catalysts with improved performance is of fundamental importance in advancing proton exchange membrane fuel cell (PEMFC) technology. Continuous‐flow, microfluidic reactions in capillary tube reactors are described, which are capable of synthesizing surfactant‐free, ultrafine PtSn alloyed nanoparticles (NPs) on various carbon supports (for example, commercial carbon black particles, carbon nanotubes, and graphene sheets). The PtSn NPs are highly crystalline with sizes smaller than 2 nm, and they are highly dispersed on the carbon supports with high loadings up to 33 wt %. These characteristics make the as‐synthesized carbon‐supported PtSn NPs more efficient than state of the art commercial Pt/C catalysts applied to the ethanol oxidation reaction (EOR). Significantly enhanced mass catalytic activity (two‐times that of Pt/C) and improved stability are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号