首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physical properties of poly(vinyl chloride) (PVC) and poly(N‐isopropylacrylamide) [poly(NIPAAm)] blend systems, and their corresponding graft copolymers such as PVC‐g‐NIPAAm, were investigated in this work. The compatible range for PVC–poly(NIPAAm) blend systems is less than 15 wt % poly(NIPAAm). The water absorbencies for the grafted films increase with increase in graft percentage. The water absorbencies for the blend systems increase with increase in poly(NIPAAm) content within the compatible range for the blends, but the absorbencies decrease when the amount of poly(NIPAAm) is more than the compatible range in the blend system. The tensile strengths for the graft copolymers are larger than the corresponding blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 170–178, 2000  相似文献   

2.
Beads composed of alginate, poly(N‐isopropylacrylamide) (PNIPAM), the copolymers of N‐isopropylacrylamide and methacrylic acid (P(NIPAM‐co‐MAA)), and the copolymers of N‐isopropylacrylamide, methacrylic acid, and octadecyl acrylate (P(NIPAM‐co‐MAA‐co‐ODA)), were prepared by dropping the polymer solutions into CaCl2 solution. The beads were freeze‐dried and the release of blue dextran entrapped in the beads was observed in distilled water with time and pH. The degree of release was in the order of alginate bead < alginate/PNIPAM bead ≈ alginate/P(NIPAM‐co‐MAA) bead < alginate/P(NIPAM‐co‐MAA‐co‐ODA) bead. On the other hand, swelling ratios reached steady state within 20 min, and the values were 200–800 depending on the bead composition. The degree of swelling showed the same order as that of release. Among the beads, only alginate/P(NIPAM‐co‐MAA‐co‐ODA) bead exhibited pH‐dependent release. At acidic condition, inter‐ and intraelectrostatic repulsion is weak and P(NIPAM‐co‐MAA‐co‐ODA) could readily be assembled into an aggregate due to the prevailing hydrophobic interaction of ODA. Thus, it could block the pore of bead matrix, leading to a suppressed release. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Hydrogels are hydrophilic polymers that swell to an equilibrium volume in the presence of water, preserving their shape. The dynamic swelling behavior of poly(N‐isopropylacrylamide‐coN,N‐dimethylacrylamide) [poly(NIPA‐co‐DMA)] copolymers at 37°C was investigated. It was observed that the swelling degree in the copolymers decreases with the N‐isopropylacrylamide content. In addition, the liberation mechanism was found to be Fickian. Diffusion coefficients according to Fick′s law as a function of the N‐isopropylacrylamide concentration and results of the release process are reported. The kinetics of cephazoline sodium release from poly(NIPA‐co‐DMA) hydrogels with different compositions was studied. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3433–3437, 2004  相似文献   

4.
A novel stimuli‐responsive magnetite nanohydrogel (MNHG), namely [poly(ethylene glycol)‐block‐poly(N‐isopropylacrylamide‐co‐maleic anhydride)2]‐graft‐poly(ethylene glycol)/Fe3O4 [PEG‐b‐(PNIPAAm‐co‐PMA)2]‐g‐PEG/Fe3O4, was successfully developed. For this purpose, NIPAAm and MA monomers were block copolymerized onto PEG‐based macroinitiator through atom transfer radical polymerization technique to produce PEG‐b‐(PNIPAAm‐co‐PMA)2. The synthesized Y‐shaped terpolymer was crosslinked through the esterification of maleic anhydride units using PEG chains to afford a hydrogel. Afterward, magnetite nanoparticles were incorporated into the synthesized hydrogel through the physical interactions. The chemical structures of all synthesized samples were characterized using Fourier transform infrared and proton nuclear magnetic resonance spectroscopies. Morphology, thermal stability, size, and magnetic properties of the synthesized MNHG were investigated. In addition, the doxorubicin hydrochloride loading and encapsulation efficiencies as well as stimuli‐responsive drug release ability of the synthesized MNHG were also evaluated. The drug‐loaded MNHG at physiological condition exhibited negligible drug release values. In contrast, at acidic (pH 5.3) condition and a little bit higher temperature (41 °C) the developed MNHG showed higher drug release values, which qualified it for cancer chemotherapy due to especial physiology of cancerous tissue in comparison with the surrounding normal tissue. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46657.  相似文献   

5.
BACKGROUND: Thermo‐responsive copolymers with racemate or single enantiomer groups are attracting increasing attention due to their fascinating functional properties and potential applications. However, there is a lack of systematic information about the lower critical solution temperature (LCST) of poly(N‐isopropylacrylamide)‐based thermo‐responsive chiral recognition systems. In this study, a series of thermo‐responsive chiral recognition copolymers, poly[(N‐isopropylacrylamide)‐co‐(N‐(S)‐sec‐butylacrylamide)] (PN‐S‐B) and poly[(N‐isopropylacrylamide)‐co‐(N‐(R,S)‐sec‐butylacrylamide)] (PN‐R,S‐B), with different molar compositions, were prepared. The effects of heating and cooling processes, optical activity and amount of chiral recognition groups in the copolymers on the LCSTs of the prepared copolymers were systematically studied. RESULTS: LCST hysteresis phenomena are found in the phase transition processes of PN‐S‐B and PN‐R,S‐B copolymers in a heating and cooling cycle. The LCSTs of PN‐S‐B and PN‐R,S‐B during the heating process are higher than those during the cooling process. With similar molar ratios of N‐isopropylacrylamide groups in the copolymers, the LCST of the copolymer containing a single enantiomer (PN‐S‐B) is lower than that of the copolymer containing racemate (PN‐R,S‐B) due to the steric structural difference. The LCSTs of PN‐R,S‐B copolymers are in inverse proportion to the molar contents of the hydrophobic R,S‐B moieties in these copolymers. CONCLUSION: The results provide valuable guidance for designing and fabricating thermo‐responsive chiral recognition systems with desired LCSTs. Copyright © 2008 Society of Chemical Industry  相似文献   

6.
We report the preparation of responsive silica nanoparticles by reaction of epoxy modified silica with stimuli responsive poly (acrylic acid‐N‐isopropylacrylamide) (poly (AA‐co‐NIPAAm)). A series of copolymers of poly (AA‐co‐NIPAAm) were synthesized by a novel route, employing solid state condensation of polyacrylic acid and isopropyl amine in different feed ratios (44 mol %–100 mol % AA). The structure of the copolymers was characterized by FT‐IR, 1H‐NMR. The lower critical solution temperature (LCST) was found to vary with the copolymer composition. The pH dependence of the LCST was also observed, and the copolymers exhibited a higher LCST at neutral pH than at acidic pH (4–5). Selected copolymers were used to prepare responsive core‐shell particles. Silica nanoparticles modified using glycidoxy propyl trimethoxy propyl silane were reacted with the responsive copolymer to form responsive core‐shell particles. The influence of reaction conditions on the modification of silica particles and reaction with responsive copolymers was investigated. The hydrodynamic behavior of the synthesized thermo responsive nanoparticles was also studied. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
Temperature and pH responsive poly(N‐isopropylacrylamide‐co‐methacrylic acid) (P(NIPAAm‐co‐MAA)) microcontainers with encapsulated magnetic nanoparticles in the shell were prepared by a two‐stage distillation precipitation polymerization. PMAA@Fe3O4/P(NIPAAm‐co‐MAA) core–shell nanoparticles were synthesized by the second‐stage polymerization of NIPAAm, MAA and N, N′‐methylenebisacrylamide as crosslinker in the presence of magnetic nanoparticles and PMAA as core. These novel triple‐functional microcontainers were prepared by selective removal of the PMAA core in water. Daunorubicin hydrochloride (DNR) was loaded into the microcontainers and the release profile was studied by UV–visible spectroscopy. The synthesized nanostructures were characterized with transmission and scanning electron microscopy, X‐ray diffraction and Fourier transform infrared spectroscopy. The magnetic properties were evaluated by vibrating sample magnetometry. The shrink and swelling behavior was studied by dynamic light scattering. Copyright © 2012 Society of Chemical Industry  相似文献   

8.
In an effort to create an in situ physically and chemically cross‐linked hydrogel for in vivo applications, N‐isopropylacrylamide (NIPAAm) was copolymerized with poly(ethylene glycol)‐monoacrylate (PEG‐monoacrylate) and then the hydroxyl terminus of the PEG was further modified with acryloyl chloride to form poly(NIPAAm‐co‐PEG) with acrylate terminated pendant groups. In addition to physically gelling with temperature changes, when mixed with a multi‐thiol compound such as pentaerythritol tetrakis 3‐mercaptopropionate (QT) in phosphate buffer saline solution of pH 7.4, this polymer formed a chemical gel via a Michael‐type addition reaction. The chemical gelation time of the polymer was affected by mixing time; swelling of the copolymer solutions was temperature dependant. Because of its unique gelation properties, this material may be better suited for long‐term functional replacement applications than other thermo‐sensitive physical gels. Also, the PEG content of this material may render it more biocompatible than similar HEMA‐based precursors in previous simultaneous chemically and physically gelling materials. With its improved mechanical strength and biocompatibility, this material could potentially be applied as a thermally gelling injectable biomaterial for aneurysm or arteriovenous malformation (AVM) occlusion. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
Temperature‐responsive polymers have become increasingly attractive as carrier for the injectable drug delivery systems. In the present work, we have studied the preparation of poly(N‐isopropylacrylamide‐acrylamide‐vinilpyrrolidone) (NIPAAm‐AAm‐VP terpolymer) nanoparticulated terpolymer and its blend with poly(lactide‐co‐glycolide, PLGA; molar ratio of lactide/glycolid 1/3). Thermosensitive terpolymer, poly(NIPAAm‐AAm‐VP) was prepared by free‐radical polymerization in aqueous solution. The nanoparticles of poly(NIPAAm‐AAm‐VP) and its blend with PLGA containing naltrexone were prepared using the evaporation and w/o emulsion‐solvent evaporation methods, respectively. Nanoparticles prepared from terpolymer‐PLGA blend at low polymer concentration (5%) shows larger particle size (>300 nm) and higher drug content%. Various types of nanoparticles showed a burst release of less than 10% after 24 h . The results suggest that by regulating different variables, desired release profiles of naltrexone can be achieved using a blend of PLGA‐poly(NIPAAm‐AAm‐VP) nanoparticulate system. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Several different composition temperature‐ and pH‐sensitive poly(acrylic acid‐gN‐isopropylacrylamide) (P(AA‐g‐NIPAM)) graft copolymers were synthesized by free‐radical copolymerization utilizing macromonomer technique. The phase behavior and conformation change of P(AA‐g‐NIPAM) in aqueous solutions were investigated by UV–vis transmittance measurements, fluorescence probe, and fluorescence quenching techniques. The results demonstrate that the P(AA‐g‐NIPAM) copolymers have temperature‐ and pH‐sensitivities, and these different composition graft copolymers have different lower critical solution temperature (LCST) and critical phase transition pH values. The LCST of graft copolymer decreases with increasing PNIPAM content, and the critical phase transition pH value increases with increasing Poly(N‐isopropylacrylamide) (PNIPAM) content. At room temperature (20°C), different composition of P(AA‐g‐NIPAM) graft copolymers in dilute aqueous solutions (0.001 wt %) have a loose conformation, and there is no hydrophobic microdomain formation within researching pH range (pH 3 ~ 10). In addition, for the P(AA‐g‐NIPAM) aqueous solutions, transition from coil to globular is an incomplete reversible process in heating and cooling cycles. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Polythiophene (PT) based dual responsive water‐soluble graft copolymer (PT‐g‐[poly(methoxyethoxy ethyl methacrylate)‐co‐poly(N,N‐diethylamino ethyl methacrylate)]) (PT‐g‐P(MeO2MA‐co‐DEAEMA)) (PTDE) has been synthesized by random copolymerization of methoxyethoxy ethyl methacrylate (MeO2MA) and N,N‐diethylamino ethyl methacrylate (DEAEMA) at 30 °C on the 2,5‐poly(3‐[1‐ethyl‐2‐(2‐ bromoisobutyrate)] thiophene) (PTI) macroinitiator using the Cu based atom transfer radical polymerization technique. The PTDE graft copolymer was characterized by gel permeation chromatography and 1H NMR techniques and it exhibits thermo‐reversible solubility in water showing a lower critical solution temperature of ca 42 °C in neutral aqueous solution. The PTDE graft copolymer contains a fluorescent PT backbone, and interestingly the system exhibits doubling of fluorescence intensity with rising temperature over the temperature range 41–45 °C at pH 7. The PTDE system therefore acts following the principle of the polymeric AND logic gate and it is also found to be effective in sensing of nitroaromatics, particularly picric acid. The influence of chain hydrophobicity on the logic operation and on the sensing of nitroaromatics is discussed. © 2014 Society of Chemical Industry  相似文献   

12.
BACKGROUND: Stimuli‐responsive hydrogels are typically obtained from non‐biodegradable monomers. The use of biodegradable crosslinkers can overcome this limitation. In this context, the main aim of this work was to use modified polycaprolactone as a crosslinker in the preparation of pH‐responsive hydrogels based on N‐isopropylacrylamide and methacrylic acid to give poly[(N‐isopropylacrylamide)‐co‐(methacrylic acid)] (P(N‐iPAAm‐co‐MAA)). RESULTS: Poly(caprolactone) dimethacrylate macromonomer was synthesized and successfully employed as crosslinker with various ratios in the synthesis of well‐known pH‐responsive hydrogels of P(N‐iPAAm‐co‐MAA). The swelling properties of these degradable hydrogels were investigated. They practically do not swell at pH = 2, but exhibit a very high swelling capacity in distilled water and in solutions of pH = 7. In addition, degradation studies at pH = 12 showed that the hydrolysis of the ester groups in the polycaprolactone chains produces, after a relatively short time, the total solubilization of the polymer chains. CONCLUSION: The hydrogels under study have certain characteristics that could make them good candidates for use as matrices in controlled drug delivery. On the one hand, they do not swell in acid pH solution (stomach conditions) but they swell extensively at neutral pH. On the other hand, they became rapidly water soluble following degradation. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
The Weibull distribution was successfully used to describe the diameter distribution of poly(N‐isopropylacrylamide‐co‐methacrylic Acid (PNIPAAm‐MAA) nanoparticles, whereas the lognormal was deemed not adequate for that purpose. The method of moments was used to predict parameters of the Weibull distribution. In this approach, the Weibull parameters were recovered from the diameter mean and variance, both of which were predicted from temperature. The distributions predicted from various temperatures for both MAA/NIPAAm ratios of 0.05 and 0.10 showed trends similar to those displayed in the observed data. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
The thermoresponsive properties in aqueous solution of the graft copolymer poly(acrylic acid‐co‐2‐acrylamido‐2‐methyl propane sulfonic acid)‐g‐poly(N‐isopropylacrylamide) [P(AA‐co‐AMPSA)‐g‐PNIPAM] were studied and compared to the corresponding behavior of the poly(acrylic acid)‐g‐poly(N‐isopropylacrylamide) (PAA‐g‐PNIPAM) graft product. Both products contain about 40% (w/w) of PNIPAM, whereas the backbone, P(AA‐co‐AMPSA), of the first copolymer contains about 40% of AMPSA mole units. The strongly charged P(AA‐co‐AMPSA)‐g‐PNIPAM graft copolymer was water soluble over the whole pH range, whereas the PAA‐g‐PNIPAM copolymer precipitated out from water at pH < 4. As a result, the first product exhibited a temperature‐sensitive behavior in a wide pH range, extended in the acidic region, whereas in semidilute aqueous solutions, an important thermothickening behavior was observed, even at low pH (pH = 3.0). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3466–3470, 2004  相似文献   

15.
Thermosensitive poly(vinyl alcohol)‐graft‐(maleic anhydride), PVA‐MA, and poly(vinyl alcohol)‐graft‐(N‐isopropylacrylamide maleic anhydride) (PVA‐MA‐NIPAAm) copolymers containing carboxyl groups were prepared using electron beam irradiation at dose 80 kGy. The swelling ratios of the cross‐linked gels were measured at various temperatures. The LCST values were measured using DSC technique. The temperature dependence of the swelling ratios of the cross‐linked copolymers and terpolymers were measured at different temperatures. The swelling ratios of copolymers increased with increasing temperature up to 25–38°C, then decreased. The swelling behavior of both copolymers and terpolymers was referred to formation of hydrogen bonds between amide group of NIPAAm moieties and carboxyl group in MA moieties and to hydrophobic interaction due to methyl groups of NIPAAm. The swelling behaviors of these gels were analyzed in buffer solution at various pH. Swelling ratios of all gels were relatively high and they showed reasonable sensitive to pH. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Poly(N‐isopropylacrylamide‐co‐hydroxyethyl methacrylate) [P(NIPAM‐co‐HEMA)] copolymer was synthesized by controlled radical polymerization from respective N‐isopropylacrylamide (NIPAM) and hydroxyethyl methacrylate (HEMA) monomers with a predetermined ratio. To prepare the thermosensitive and biodegradable nanoparticles, new thermosensitive graft copolymer, poly(L ‐lactide)‐graft‐poly(N‐isoporylacrylamide‐co‐hydroxyethyl methacrylate) [PLLA‐g‐P(NIPAM‐co‐HEMA)], with the lower critical solution temperature (LCST) near the normal body temperature, was synthesized by ring opening polymerization of L ‐lactide in the presence of P(NIPAM‐co‐HEMA). The amphiphilic property of the graft copolymers was formed by the grafting of the PLLA hydrophobic chains onto the PNIPAM based hydrophilic backbone. Therefore, the graft copolymers can self‐assemble into uniformly spherical micelles ò about 150–240 nm in diameter as observed by the field emission scanning electron microscope and dynamic light scattering. Dexamethasone can be loaded into these nanostructures during dialysis with a relative high loading capacity and its in vitro release depends on temperature. Above the LCST, most of the drugs were released from the drug‐loaded micelles, whereas a large amount of drugs still remains in the micelles after 48 h below the LCST. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Thermo‐ and pH‐sensitive polymers were prepared by graft polymerization or blending of chitosan and poly(N‐isopropylacrylamide) (PNIPAAm). The graft copolymer and blend were characterized by Fourier transform‐infrared, thermogravimetric analysis, X‐ray diffraction measurements, and solubility test. The maximum grafting (%) of chitosan‐g‐(N‐isopropylacrylamide) (NIPAAm) was obtained at the 0.5 M NIPAAm monomer concentration, 2 × 10−3 M of ceric ammonium nitrate initiator and 2 h of reaction time at 25°C. The percentage of grafting (%) and the efficiency of grafting (%) gradually increased with the concentration of NIPAAm up to 0.5 M, and then decreased at above 0.5 M NIPAAm concentration due to the increase in the homopolymerization of NIPAAm. Both crosslinked chitosan‐g‐NIPAAm and chitosan/PNIPAAm blend reached an equilibrium state within 30 min. The equilibrium water content of all IPN samples dropped sharply at pH > 6 and temperature > 30°C. In the buffer solutions of various pH and temperature, the chitosan/PNIPAAm blend IPN has a somewhat higher swelling than that of the chitosan‐g‐NIPAAm IPN. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1381–1391, 2000  相似文献   

18.
The monodisperse poly(styrene‐coN‐isopropylacrylamide) (poly(St‐co‐NIPAAm)) particles prepared by emulsifier‐free emulsion polymerization with microwave irradiation were induced by capillary forces to self‐assemble, and formed the two‐dimensional films on the clean glassware wafer substrates. The morphologies of the two‐dimensional films were characterized by scanning electron microscopy (SEM) and atom force microscopy (AFM). The results showed that monodisperse poly(St‐co‐NIPAAm) particles could form ordered two‐dimensional films by capillary forces. With NIPAAm concentration increasing, there gradually appeared surface undulations or surface defective region on the two‐dimensional films. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3514–3519, 2006  相似文献   

19.
Thermo‐responsive poly(N‐isopropylacrylamide) (poly(NIPAAm)) and pH‐responsive poly(N,N′‐diethylaminoethyl methacrylate) (poly(DEAEMA)) polymers were grafted to carboxymethylchitosan (CMC) via radical polymerization to form highly water swellable hydrogels with dual responsive properties. Ratios of CMC, NIPAAm to DEAEMA used in the reactions were finely adjusted such that the thermo and pH responsiveness of the hydrogels was retained. Scanning electron microscopy (SEM) indicated the formation of an internal porous structure for the swollen CMC hydrogels upon incorporation of poly(NIPAAm) and poly(DEAEMA). Effect of temperature and pH changes on water swelling properties of the hydrogels was investigated. It was found that the water swelling of the hydrogels was enhanced when the solution pH was under basic conditions (pH 11) or the temperature was below its lower critical solution temperature (LCST). These responsive properties can be used to regulate releasing rate of an entrapped drug from the hydrogels, a model drug, indomethacin was used to demonstrate the release. These smart and nontoxic CMC‐based hydrogels show great potential for use in controlled drug release applications with controllable on‐off switch properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41505.  相似文献   

20.
BACKGROUND: A considerable amount of research has been focused on smart hydrogels that can respond to external environmental stimuli, especially temperature and pH. In this study, fast responsive thermo‐ and pH‐sensitive poly[(N,N‐diethylacrylamide)‐co‐(acrylic acid)] hydrogels were prepared by free radical copolymerization in aqueous solution using poly(ethylene glycol) (PEG) as a pore‐forming agent. RESULTS: Swelling studies showed that the hydrogels produced had both temperature and pH sensitivity. The deswelling kinetics at high temperature demonstrated that the shrinking rates were influenced by the addition of the pore‐forming agent and the amount of acrylic acid in the initial total monomers. The deswelling curves in low‐buffer solutions had two stages. Pulsatile swelling studies indicated that the PEG‐modified hydrogels were superior to the normal ones. These different swelling properties were further confirmed by the results of scanning electron microscopy. CONCLUSION: Such fast responsive thermo‐ and pH‐sensitive hydrogels are expected to be useful in biomedical fields for stimuli‐responsive drug delivery systems. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号