首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
This is a comparative study between ultrahigh molecular weight polyethylene (UHMWPE) reinforced with micro‐ and nano‐hydroxyapatite (HA) under different filler content. The micro‐ and nano‐HA/UHMWPE composites were prepared by hot‐pressing method, and then compression strength, ball indentation hardness, creep resistance, friction, and wear properties were investigated. To explore mechanisms of these properties, differential scanning calorimetry, infrared spectrum, wettability, and scanning electron microscopy with energy dispersive spectrometry analysis were carried out on the samples. The results demonstrated that UHMWPE reinforced with micro‐ and nano‐HA would improve the ball indentation hardness, compression strength, creep resistance, wettability, and wear behavior. The mechanical properties for both micro‐ and nano‐HA/UHMWPE composites were comparable with pure UHMWPE. The mechanical properties of nano‐HA/UHMWPE composites are better compared with micro‐HA/UHMWPE composites and pure UHMWPE. The optimum filler quantity of micro‐ and nano‐HA/UHMWPE composites is found to be at 15 wt % and 10 wt %, separately. The micro‐ and nano‐HA/UHMWPE composites exhibit a low friction coefficient and good wear resistance at this content. The worn surface of HA/UHMWPE composites shows the wear mechanisms changed from furrow and scratch to surface rupture and delamination when the weight percent of micro‐ and nano‐HA exceed 15 wt % and 10 wt %. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42869.  相似文献   

2.
Polyimide (PI) coatings filled with PTFE and nano‐Si3N4 were prepared by a spraying technique and successive curing. Nano‐Si3N4 particles were modified by grafting 3‐aminopropyltriethoxysilane to improve their dispersion in the as‐prepared coatings. Friction and wear performances and wear mechanisms of the coatings were evaluated. The results show that the incorporations of PTFE and modified nano‐Si3N4 particles greatly improve the friction reduction and wear resistance of PI coating. The friction and wear performance of the composite coating is significantly affected by the filler mass fraction and sliding conditions. PI coating incorporated with 20 wt % PTFE and 5 wt % modified nano‐Si3N4 displays the best tribological properties. Its wear rate is more than one order of magnitude lower and its friction coefficient is over two times smaller than that of the unfilled PI coating. Differences in the friction and wear behaviors of the hybrid coatings as a function of filler or sliding condition are attributed to the filler dispersion, the characteristic of transfer film formed on the counterpart ball and the wear mechanism of the coating under different sliding conditions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40410.  相似文献   

3.
Composites of polyphenylene sulfide (PPS) filled with solid lubricant particles of graphite (C), molybdenum disulfide (MoS2), and polytetrafluoroethylene (PTFE) were prepared by compression molding. The size of the solid lubricant particles was 3‐;5 µm. The friction and wear behaviors of the composites were examined with a pinon‐disk test rig. The worn composite pin surfaces and the transfer films formed on the counterface were analyzed with scanning electron microscopy. An X‐ray photo‐electron spectroscope (XPS) was used to characterize the chemical states of the elements in the transfer film. It has been found that graphite and PTFE as the fillers increase the wear resistance of PPS considerably, while MoS2 as the filler decreases the wear resistance of PPS greatly. The fillers promote the decomposition of PPS and generate compounds, which accounts for the changes in the wear resistance of the composites.  相似文献   

4.
A chemical grafting method was applied to modify TiO2 nanoparticles through covalently introducing glycidoxypropyltrimethoxy silicane (KH560) followed by polyoxymethylene onto the particles to overcome the disadvantages generated by the agglomeration of nanoparticles. TiO2 nanoparticles unmodified and modified were introduced into hybrid polytetrafluoroethylene (PTFE)/cotton fabric composites. Friction and wear test demonstrated that TiO2 nanoparticles unmodified and modified can significantly increase the wear resistance of hybrid PTFE/cotton fabric composites but cannot reduce the friction coefficient. Fabric composites filled with grafted TiO2 nanoparticles exhibited a lower wear rate due to the disintegration of agglomeration and the improvement of interfacial adhesion between filler/matrix. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

5.
The effects of lubricating‐oil additive zinc dialkyldithiophosphate (ZDDP) on the friction and wear properties of polymers and their composites sliding against GCr15 bearing steel were studied by using an MHK‐500 ring‐on‐block wear tester (Timken wear tester). Then the frictional surfaces of the friction pairs were examined by using electron probe microanalysis (EPMA). Experimental results show that the ZDDP contained in liquid paraffin has little effect on the friction coefficients of the polyimide (PI) or polyamide 66 (PA66) against GCr15 bearing steel friction pairs compared with that under the lubrication of liquid paraffin, but it slightly reduces the friction coefficients of polytetrafluoroethylene (PTFE) or its composites against GCr15 bearing steel friction pairs. Under lubrication of liquid paraffin containing 2 wt % ZDDP, the ZDDP film absorbed on the frictional surfaces of the PTFE composites–GCr15 bearing steel friction pairs exhibits obvious antiwear properties; it greatly reduces the wear of pure PTFE and the PTFE composites filled with Pb, PbO, and MoS2; and the wear of the PTFE composites can be reduced by one order of magnitude compared with that under lubrication of pure liquid paraffin. Meanwhile, the inorganic fillers Pb, PbO, and MoS2 contained in PTFE have little effect on the absorption of ZDDP to the frictional surfaces, so they have little effect on the friction coefficients of the PTFE composites–GCr15 bearing steel friction pairs under the lubrication of liquid paraffin containing 2 wt % ZDDP. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1240–1247, 2000  相似文献   

6.
In this study, the thermal conductivity and wear resistance of the polytetrafluoroethylene (PTFE)/boron nitride (BN), PTFE/zinc oxide (ZnO), PTFE/tetra‐needle‐shaped zinc oxide whiskers (T‐ZnO), and PTFE/hybrid filler composites were investigated. Moreover, hot‐press molding was used to prepare the composites, and scanning electron microscopy was used to observe the morphology of the fillers and the friction interface of the composites. The results show that continuous thermally conductive paths could be formed in the PTFE/hybrid fillers (T‐ZnO and BN) composites so that the thermal conductivity of the PTFE was improved through addition of the hybrid fillers. Meanwhile, the synergistic effects of the hybrid fillers were useful for reducing the wear rate of the composites. In addition, for the pure PTFE, abrasive and adhesive wear was found. Compared to the worn surface of the pure PTFE, the worn surface of the PTFE composites filled with ZnO, T‐ZnO, BN, and hybrid fillers presented much smoother surfaces, and slighter ploughing occurred. Therefore, the hybrid fillers improved not only the thermal conductivity but also the wear resistance of the PTFE composites. The data obtained in this study contributed to the construction of a technical foundation for the preparation of composites with a high thermal conductivity and wear resistance. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42302.  相似文献   

7.
Summary: A solid lubricant composite material was prepared by compression molding PTFE and acid treated nano‐attapulgite. The friction and wear tests were performed on a block‐on‐ring wear tester. Scanning electron microscopy (SEM), energy‐dispersive X‐ray spectrometer (EDS) and DSC were utilized to investigate material microstructures and examine modes of failure. Experimental results showed that there was no significant change in coefficient of friction, but the wear rate of the PTFE composite was orders of magnitude less than that of pure PTFE. Acid treated nano‐attapulgite was superior to untreated nano‐attapulgite in enhancing the wear resistance of PTFE. Moreover, the wear resistance of the composite increased monotonically with increasing treated attapulgite concentration. Investigation of transfer film and analysis of debris for PTFE and its composite showed that acid treated nano‐attapulgite filled to PTFE could facilitate formation of transfer film on the steel ring surface and inhibit breakage of PTFE molecular chain. The PTFE composite with higher heat absorption capacity exhibited improved wear resistance. Furthermore, the steel ring counterface abrasion was not found.

Effect of load on the wear rate of PTFE and its composites.  相似文献   


8.
It is well known that inorganic filler particles enhance the mechanical and tribological properties of polymers. The stiffness, toughness, and wear performance of the composites are extensively determined by the size, shape, volume content, and especially the dispersion homogeneity of the particles. In the present study, various amounts of micro‐ and nano‐scale particles (titanium dioxide TiO2, 200–400 nm, calcium silicate CaSiO3, 4–15 μm) were introduced into an epoxy polymer matrix for its reinforcement. The influence of these particles on the impact strength, dynamic mechanical thermal properties, and block‐on‐ring wear behavior was investigated. Using only the nano‐particles, the results demonstrate the best improvement in stiffness, impact strength, and wear resistance of the epoxy at a nano‐particle content of 4 vol% TiO2. Therefore, this nanocomposite was used to act as a matrix for the CaSiO3 micro‐particles, in the hope of finding synergistic effects between the micro‐ and the nano‐particles. Results show, in fact, a further improvement of wear resistance and stiffness, whereas the impact strength suffers. Geometrical properties of the particles, the homogeneous dispersion state, energy dissipating fracture mechanisms, and a transition of wear mechanisms mostly contribute to the increase in performance.  相似文献   

9.
Aimed to study the effects of reinforcing or functional fillers on mechanical and tribological properties of PTFE‐based friction materials of ultrasonic motor, carbon fibers reinforced PTFE composites modified with different functional fillers with differences in dimension, size, and hardness are fabricated. The tribological performances of PTFE‐based friction materials are comparatively investigated under different sliding velocities and normal loads on different surface morphologies, respectively. The experimental results reveal that nano‐SiO2 shows excellent performance in improving friction stabilities and wear resistance in different operating conditions. It is believed the silica‐based tribofilms, higher deformation resistance, and bearing capacity play a key role in improving friction stabilities. Furthermore, the results also show that the surface topography plays an important role in wear properties. The lower wear rate (sliding against with the disordered surface) is believed to be attributed to wear debris easy‐store characteristic of the topography, which promotes transfer films formation and decreases the wear rate effectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44835.  相似文献   

10.
表面处理Al2O3增强PTFE基复合材料的摩擦学性能   总被引:2,自引:1,他引:2  
利用MM-200型摩擦磨损试验机考察了表面处理与未处理纳米Al2O3对填充聚四氟乙烯(PTFE)复合材料摩擦学性能的影响,采用扫描电子显微镜观察试样混合效果和磨损表面形貌并分析其磨损机理。结果表明:填充PTFE摩擦系数比PTFE略有增加。纳米Al2O3可以提高PTFE耐磨性,表面处理纳米Al2O3在PTFE中能较均匀分散,其耐磨性比相同含量但未经表面处理的纳米Al2O3填充PTFE高一倍。导致PTFE磨损的重要机理是切削和粘着磨损。  相似文献   

11.
The tribological properties of poly(ether–ether–ketone) (PEEK)/aluminum nitride (AlN) composites reinforced with micro‐ and nano‐AlN particles were evaluated under dry sliding conditions. The wear resistance of pure PEEK is 10‐fold higher than mild steel. It was further improved by 2‐fold at 20 wt % micro‐AlN and by more than 4‐fold at 30 wt % nano‐AlN composite compared with pure PEEK. The improvement in wear resistance was attributed to a thin and coherent transfer film. However, it was deteriorated on further increasing micro‐AlN. The coefficient of friction of the composites was increased. Scanning electron microscopy and optical microscopy of worn surfaces and transfer films have been explained in detail. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Polyaniline/nano‐TiO2 composites with the content of nano‐TiO2 varying from 6.2 wt % to 24.1 wt % were prepared by using solid‐state synthesis method at room temperature. The structure and morphology of the composites were characterized by the Fourier transform infrared (FTIR) spectra, ultraviolet‐visible (UV–vis) absorption spectra, X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The electrochemical performances of the composites were investigated by galvanostatic charge–discharge measurement, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results from FTIR and UV–vis spectra showed that the composites displayed higher oxidation and doping degree than pure PANI. The XRD and morphological studies revealed that the inclusion of nano‐TiO2 particles hampered the crystallization of PANI chains in composites, and the composites exhibited mixed particles from free PANI particles and the nano‐TiO2 entrapped PANI particles. The galvanostatic charge–discharge measurements indicated that the PANI/nano‐TiO2 composites had higher specific capacitances than PANI. The composite with 6.2 wt % TiO2 had the highest specific capacitance among the composites. The further electrochemical tests on the composite electrode with 6.2 wt % TiO2 showed that the composite displayed an ideal capacitive behavior and good rate ability. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Polyoxymethylene (POM) composites modified with nanoparticles, polytetrafluoroethylene (PTFE) and MoS2 were prepared by a twin‐screw extruder. The effect of nanoparticles and solid lubricant PTFE/MoS2 on mechanical and tribological properties of the composites were studied. Tribological tests were conducted on an Amsler friction and wear tester using a block‐on‐ring arrangement under dry sliding and oil lubricated conditions, respectively. The results showed that generally speaking POM nanocomposites had better stiffness and tribological properties than corresponding POM composites attributed to the high surface energy of nanoparticles, except that the tensile strength of three composites and dry‐sliding tribological properties of POM/3%Al2O3 nanocomposite decreased due to the agglomeration of nanoparticles. Tribological properties differed under dry sliding and oil lubricated conditions. The friction coefficient and wear volume of POM nanocomposites under oil lubricated condition decreased significantly. The increased deformation resistance supported the increased wear resistance of POM nanocomposites. POM/PTFE/MoS2/3%Al2O3 nanocomposite had the best mechanical and tribological properties of all three composites, which was attributed to the synergistic effect of nanoparticles and PTFE/MoS2. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

14.
Five kinds of polytetrafluoroethylene (PTFE)‐based composites, pure PTFE, PTFE + 30(v)% MoS2, PTFE + 30(v)% PbS, PTFE + 30(v)% CuS, and PTFE + 30(v)% graphite (GR) composites, were first prepared. Then the friction and wear properties of these PTFE composites, sliding against GCr15‐bearing steel under both dry and liquid paraffin‐lubricated conditions, were studied by using an MHK‐500 ring‐on‐block wear tester. Finally, the worn surfaces and the transfer films of the PTFE composites formed on the surface of GCr15 bearing steel were investigated by using a scanning electron microscope (SEM) and an optical microscope, respectively. Experimental results show that filling with MoS2, PbS, CuS, or graphite to PTFE can reduce the wear of the PTFE composites by two orders of magnitude compared to that of pure PTFE under dry friction conditions. However, the friction and wear‐reducing properties of these PTFE composites can be greatly improved by lubrication with liquid paraffin. Investigations of transfer films show that MoS2, PbS, CuS, and graphite promote the transfer of the PTFE composites onto the surface of GCr15‐bearing steel under dry friction conditions, but the transfer of the PTFE composites onto the surface of GCr15‐bearing steel can be greatly reduced by lubrication with liquid paraffin. SEM examinations of worn surfaces show that with lubrication of liquid paraffin, the creation and development of the cracks occurred on the worn surfaces of the PTFE composites under load, which reduces the load‐supporting capacity of the PTFE composites. This would lead to the deterioration of the friction and wear properties of the PTFE composites under higher loads (>600N). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 751–761, 1999  相似文献   

15.
It has been found that nano‐ or microsized inorganic particles in general enhance the tribological properties of polymer materials. In the present study, 5 vol % nano‐TiO2 or micro‐CaSiO3 was introduced into a polyetherimide (PEI) matrix composite, which was filled additionally with short carbon fibers (SCF) and graphite flakes. The influence of these inorganic particles on the sliding behavior was investigated with a pin‐on‐disc testing rig at room temperature and 150°C. Experimental results showed that both particles could reduce the wear rate and the frictional coefficient (μ) of the PEI composites under the applied testing conditions. At room temperature, the microparticles‐filled composites exhibited a lower wear rate and μ, while the nano‐TiO2‐filled composites possessed the lowest wear rate and μ at elevated temperature. Enhancement in tribological properties with the addition of the nano‐particles was attributed to the formation of transfer layers on both sliding surfaces together with the reinforcing effect. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1678–1686, 2006  相似文献   

16.
Polytetrafluoroethylene (PTFE)‐based composites, filled with CeO2, CeF3, and La2O3 in volume contents of 5, 10, 15, 20, and 30%, were prepared. Then, the friction and wear behavior of these PTFE composites sliding against GCr15 bearing steel under both dry and liquid paraffin‐lubricated conditions was evaluated using an MHK‐500 ring‐on‐block wear tester. Finally, the worn surfaces and the transfer films of these PTFE composites were investigated using a scanning electron microscope (SEM) and an optical microscope. Experimental results showed that filling CeO2, CeF3, and La2O3 into PTFE can reduce the wear of the PTFE composites by 1–2 orders of magnitude. When the content of CeO2 in PTFE is 15%, the friction and wear properties of the CeO2‐filled PTFE composite are the best. Meanwhile, when the content of La2O3 in PTFE is between 15 and 20%, the PTFE composite filled with La2O3 exhibits excellent friction and wear‐reducing properties. However, the friction coefficient of the CeF3‐filled PTFE composite increases but its wear decreases with increase in the content of CeF3 from 5 to 30%. The friction and wear‐reducing properties of CeO2‐, CeF3‐, and La2O3‐filled PTFE composites can be greatly improved by lubrication with liquid paraffin, but the limit loads of the PTFE composites decrease with increase in the content of CeO2, CeF3, and La2O3 in PTFE (from 5 to 30%) under the same conditions. Investigations of worn surfaces show that the interaction between liquid paraffin and the CeO2‐, CeF3‐, and La2O3‐filled PTFE composites, especially the absorption of liquid paraffin into the microdefects of the PTFE composites, creates some cracks on the worn surfaces of the PTFE composites and that the creation and development of the cracks reduces the mechanical strength and the load‐supporting capacity of the PTFE composites. However, with increase of the content of CeO2, CeF3, and La2O3 in the PTFE, the microdefects in the PTFE composites also increase, which would lead to increase in the number of the cracks on the worn surfaces of the PTFE composites under load and, so, in turn, lead to the reduction of the limit loads of the CeO2‐, CeF3‐, and La2O3‐filled PTFE composites under lubrication with liquid paraffin. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 78: 797–805, 1999  相似文献   

17.
The influence of incorporated 300 nm TiO2 (4 vol %), graphite (7 vol %), or combination of both fillers on the tribological performance of an epoxy resin was studied under various sliding load (10–40 N) and velocity conditions (0.2–3.0 m/s). Mechanical measurements indicated that the incorporation of TiO2 significantly enhanced the flexural and impact strength of the neat epoxy and the graphite including epoxy. Tribological tests were conducted with a cylinder‐on‐flat testing rig. The incorporation of nano‐TiO2 significantly improved the wear resistance of the neat epoxy under mild sliding conditions; however, this effect was markedly diminished under severe sliding conditions (high velocity and normal load). Nano‐TiO2 reduced the coefficient of friction only under severe sliding conditions. Graphite showed a beneficial effect in reducing the wear rate and the coefficient of friction of the neat epoxy. Compared to the nano‐TiO2‐filled epoxy, the graphite‐filled epoxy showed more stable wear performance with the variation of the sliding conditions, especially the normal load. A synergistic effect was found for the combination of nano‐TiO2 and graphite, which led to the lowest wear rate and coefficient of friction under the whole investigated conditions. The synergistic effect was attributed to the effective transfer films formed on sliding pair surfaces and the reinforcing effect of the nanoparticles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2391–2400, 2006  相似文献   

18.
Polytetrafluoroethylene (PTFE) has excellent corrosion resistance and a low coefficient of friction; however, its high wear rate and low hardness severely limit its use. In the work, nano particles were used as fillers for PTFE. The composites were prepared by the homogeneous mixing of PTFE and other fillers and sintered at high temperatures. The work aimed to investigate the effect of various nano fillers (nanocarbon powders, graphene, fullerene, nano graphite powders, and nano copper powders) on the mechanical, thermal, and frictional properties of composites. The results of the experiments showed that the addition of graphene could improve the stress and strain values of the composites, and all the nano fillers could improve the thermal conductivity of the PTFE composites. The friction experiments showed that fullerenes could significantly improve the wear resistance of PTFE composites. In the theoretical simulation, the thermal conductivity of PTFE composites was predicted using ANSYS software, with the changes in the temperature and friction force in the friction process. The theoretical simulation results matched with the experimental values, which proved the accuracy of the theoretical simulations.  相似文献   

19.
汪怀远  朱艳吉  冯新  陆小华 《化工学报》2009,60(7):1812-1817
分别研究了不同含量钛酸钾晶须(PTW)、碳纤(CF)填充聚四氟乙烯(PTFE)复合材料在硫酸溶液中和干摩擦条件下摩擦学性能以及酸中的耐蚀性能,借助SEM等分析探讨了相关机理。结果表明,酸中纯PTFE耐磨性较干摩擦条件下提高了2个数量级,摩擦系数也只有干摩擦的15.3%。与CF/PTFE相比,PTW/PTFE复合材料在酸中显示更好的耐蚀和耐磨性能。PTW可以进一步提高PTFE酸中耐磨性能、降低摩擦系数。含15%(质量)PTW时复合材料具有最低的磨损率,此时比纯PTFE酸中耐磨性提高13.8倍,是相同含量CF/PTFE耐磨性的3.2倍。由于酸溶液的冷却和润滑作用,复合材料的摩擦系数与干条件相比明显降低。然而,酸溶液阻止了转移膜的形成。不管是干摩擦还是在酸性溶液中,当填料含量超过15%(质量)时,犁削和磨粒磨损是PTFE复合材料的主要磨损机理。  相似文献   

20.
Ultrasonic motors (USMs) are driven by friction forces between a stator and rotor. So the output properties and life of USMs are strongly related to the properties, such as the mechanical and tribological properties, of the frictional materials. In this study, the effects of the content of potassium titanate whiskers (PTWs) on the mechanical and tribological properties of polytetrafluoroethylene (PTFE)-based friction materials and the performances of the corresponding USMs were studied. The morphology of worn surfaces of PTFE composites were observed with a scanning electron microscope. The experimental results show that the PTWs not only increased the hardness and elastic modulus of the PTFE composites but also increased the friction coefficient and wear resistance of the PTFE composites. On the whole, the PTFE-based friction materials filled with 5 wt % PTWs were the preferable friction materials for USMs. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号