首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, dioctyl 2,5-thiophenedicarboxylate (DOT), a potentially bio-based plasticizer, was synthesized and evaluated as an alternative to traditional petroleum-based plasticizers. The chemical structure of DOT was confirmed by FTIR and 1H NMR. Besides, its plasticization effect on poly(vinyl chloride) (PVC) was investigated in detail, and dioctyl 2,5-furandicarboxylate (DOF) as well as dioctyl isophthalate (DOIP) with similar chemical structures were used as references. The DMA results showed that the glass transition temperature (Tg) of PVC/DOT, PVC/DOF, and PVC/DOIP was 45.1°C, 33.6°C, and 51.3°C, respectively, indicating that the plasticizing efficiency of DOT was better than that of DOIP but lower than that of DOF. However, the tensile test results exhibited that the elongation at the break of PVC/DOT was higher than that of PVC/DOF, which was attributed to the easy phase separation between DOF and PVC. In addition, DOT displayed the best volatility resistance and exudation resistance among the three plasticizers, attributed to its highest molecular weight. Moreover, the migration loss of DOT in non-polar solvents was much smaller than that of DOIP because of its stronger molecular polarity. In conclusion, DOT has good potential to replace traditional petroleum-based plasticizers and be used as a primary plasticizer for PVC.  相似文献   

2.
Two castor oil acid esters containing a ketal or ketone group (KCL or CL), as alternative plasticizers for poly(vinyl chloride) (PVC), were prepared. The structures were confirmed by 1H NMR and FTIR spectroscopies. The effects of the presence of a ketal or ketone group in these compounds on PVC plasticization were examined. The DMA and SEM results showed that both plasticizers were miscible with PVC and exhibited excellent plasticizing properties, compared to those of dioctyl phthalate (DOP). The PVC plasticized by KCL displayed a lower Tg value of 20.6 ° C, which was lower than that of PVC plasticized with DOP (22.3 ° C) and PVC plasticized with CL (40.5 ° C). Tensile tests indicated that PVC plasticized using KCL showed a 37% higher of elongation at break than PVC plasticized by CL and 30% higher than PVC plasticized by DOP. The plasticizing mechanism was also investigated. Moreover, exudation, volatility, and extraction tests, along with TGA indicated that the presence of ketal groups effectively improved the migration resistance of plasticizer and the thermal stability of PVC blends. Taken together, introducing ketal groups into plasticizer might be an effective strategy for improving its plasticizing efficiency.  相似文献   

3.
Two natural plasticizers derived from cardanol (CD), cardanol acetate (CA) and epoxidized cardanol acetate (ECA), were synthesized and characterized by 1H NMR and 13C NMR. The plasticizing effects of the obtained plasticizers on semi-rigid polyvinylchloride (PVC) formulations were also investigated. Two commercial phthalate ester plasticizers, dioctyl terephthalate (DOTP) and diisononyl phthalate (DINP), were used as controls. Mechanical and thermal properties, compatibility, thermal stability, microstructure, and workability were assessed by dynamic mechanical analysis (DMA), mechanical analysis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and dynamic stability analysis, respectively. Results indicated that the natural plasticizer ECA had overallsuperior flexibility, compatibility, thermal stability, and workability comparable to both controls. The obtained CA and ECA have lower volatility resistance and similar extraction and exudation resistance than that of DOTP and DINP. The CA was further blended with DOTP in soft PVC films. Results of DMA, TGA and mechanicalanalysis indicated that CA can serve as a secondary plasticizer to improve the related properties of soft PVC formulations. These CD derived plasticizers show promise as an alternative to fully or partially replace petroleum-based plasticizers.  相似文献   

4.
The aim of this work is to assess the degradation of flexible poly(vinyl chloride) (PVC) films produced using orthophthalate based and recently introduced nonorthophthlate plasticizers which have compliance with recent environmental regulations. The plasticized PVC films were subjected to several heat treatments at 85–160 °C up to 420 min. Ultraviolet–visible spectroscopy was utilized to follow polyene formation upon dehydrochlorination of PVC. The amount of polyenes formed exhibited difference amongst the films those plasticized with diethyl hexylphthalate, diisodecyl phthalate, dioctyl terephthalate (DOTP), and diisononyl 1,2‐cyclohexanedicarboxylic acid (DINCH). The order of polyene concentration formed at the utmost level severe heat treatment is in line with the molecular weight ranking from highest to lowest, as the films with diisodecyl phthalate > DINCH > DOTP > diethyl hexylphthalate. Discoloration assessed in terms of yellowness index revealed that the films having recently introduced plasticizers as DOTP and DINCH were competing well with the films having orthophthalate based plasticizers. Scanning electron microscopy images revealed that the longer times for gelation during their production would improve the maturation of the films although they are already coherent and strong. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46092.  相似文献   

5.
A novel plasticizer epoxidized dimeric acid methyl ester (EDAMe) based on rubber seed oil was synthesized. Chemical structure of EDAMe was characterized by Fourier transform infrared (FTIR) and gel permeation chromatography (GPC). Effects of EDAMe as secondary plasticizer and its substitution of commercial plasticizer dioctyl terephthalate (DOTP) in soft poly(vinyl chloride) (PVC) films were studied. The thermal properties, mechanical properties and migration stabilities of PVC films were explored with DMA, TG, TG–FTIR, dynamic thermal stability analysis, tensile and migration tests. The results indicated that the epoxidized rubber seed oil based ester has significantly higher thermal stability than DOTP. When DOTP was substituted with 20% (m/m) EDAMe, the results of initial decomposition temperature (Ti), 10% and 50% mass loss temperatures (T10 and T50), and the first maximum weight‐loss temperature rate (TP1) reached 267.2 °C, 263.5 °C, 307.3 °C and 298.9 °C, respectively. Furthermore, flexibility of the obtained PVC films enhanced significantly with the adding of EDAMe. The migration stabilities of EDAMe was also investigated and showed good migration resistance. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43668.  相似文献   

6.
A natural plasticizer with multifunctional groups, similar in structure to phthalates, cardanol derivatives glycidyl ether (CGE) was synthesized from cardanol by a two‐step modification process and characterized by FT‐IR, 1HNMR, and 13CNMR. The resulting product was incorporated to PVC (CGE/PVC), and plasticizing effect was compared with PVC incorporated with two kinds of commercial phthalate ester plasticizers bis (2‐ethylhexyl) benzene‐1,4‐dicarboxylate (DOTP) and diisononyl phthalate (DINP). Dynamic mechanical analysis and mechanical properties testing of the plasticized PVC samples were performed in order to evaluate their flexibility, compatibility, and plasticizing efficiency. SEM was employed to produce fractured surface morphology. Thermogravimetric analysis and discoloration tests were used to characterize the thermal stabilities. Dynamic stability analysis was used to test the processability of formulations. Compared with DOTP and DINP plasticized samples, CGE/PVC has a maximum decrease of 9.27% in glass transition temperature (Tg), a maximum increase of 17.6% in the elongation at break, and a maximum increase of 31.59°C and 25.31 min in 50% weight loss (T50) and dynamic stability time, respectively. The obtained CGE also has slightly lower volatility resistance and higher exudation resistance than that of DOTP and DINP. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42465.  相似文献   

7.
The aim of the present work is to elucidate the degradation kinetics of polyvinyl chloride (PVC) plasticized with some phthalate and nonphthalate plasticizers. A PVC thermomat instrument was utilized to maintain the isothermal degradation conditions at 140 and 160°C, and to suppress the oxidative degradation by means of nitrogen flow. The conductivity measurements were performed to follow hydrogen chloride (HCl) gas which is released upon PVC degradation and trapped in water. Dehydrochlorination of plasticized PVC films occurred with activation energies of about 23–160 and 26–117 kJ mol?1 and the isokinetic temperatures, at which the dehydrochlorination rate constants of all p‐PVC films would have the same value, were found to be 171 and 128°C for initial and linear regions of dehydrochlorination curve, respectively. Plasticizer incorporation contributes to the stability of the films particularly after the consumption of stabilizer due to the dehydrochlorination. Influence of temperature rise by 20°C on the degradation rate constant is the lowest for DINCH having p‐PVC films as 0.36 and 0.42% increment at the initial region and linear region, respectively. On the other hand, DOTP reveals greater stability than the others do since the compensation ratio of the PVC film having DOTP is greater than the other films. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41579.  相似文献   

8.
The aim of the present work is to provide information about the migration of phthalate and non‐phthalate plasticizers generally used in flexible polyvinyl chloride (PVC) applications. Plastisols (pastes) were prepared by mixing PVC, plasticizer, and thermal stabilizer. The plasticized PVC (p‐PVC) films are obtained by gelation at 160°C for 15 min. The p‐PVC films were heat treated at 50, 85, 100, 130, and 160°C up to 420 min to follow the mass loss to find out diffusivity of plasticizer out of films into air and to determine related activation energies. The films having di‐octyl terephthalate (DOTP) and di‐isononyl 1,2‐cyclohexanedicarboxylic acid (DINCH) exhibited the lowest mass loss in general, among the phthalate and non‐phthalate plasticizer having p‐PVC films, respectively, as confirmed by FTIR investigation. The same tendency was observed for diffusion coefficients and for the activation energies of migration. The diffusion coefficients were found to be around 3.5 × 10?18–2.1 × 10?17 m2/sec for the studied plasticizers in PVC at 50°C and around 4.0 × 10?15–9.9 × 10?14 m2/sec at 160°C. The activation energies for 85–160°C interval were determined to be between 70 and 153 kJ/mol (0.72–1.58 eV) for the plasticizers used herein those could be treated as a homologous series as deduced from the related compensation factors. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
The emissivity of plasticized poly(vinly chloride) (PVC) containing varying compositions and amounts of plasticizer was investigated. The four plasticizers examined were dibutyl phthalate (DBP), dioctyl phthalate (DOP), diisodecyl phthalate (DIDP) (Phthalic acid type), and dioctyl adipate (DOA) (adipic acid type). The emmissivity of plasticized PVC film increased almost equally with the difference in the compositions between DOP and DOA. It was also clear that the emissivity of the plasticized PVC film decreased gradually with the molecular sequence length of DBP, DOP, and DIDP.  相似文献   

10.
选用了邻苯增塑剂(DOP)、柠檬酸酯类增塑剂(ATBC、ATOC)、对苯增塑剂(DOTP)、偏苯增塑剂(TOTM)及新型植物基增塑剂ID-37制备了增塑PVC材料,对所制备的PVC材料的拉伸强度、断裂伸长率、硬度、180℃热稳定性进行表征,测试结果表明,180℃静态热稳定性DOTP与TOTM最优,DOP与ID37次之,ATBC与ATOC相当。增塑剂对力学性能影响较小,对硬度差异影响较大,其中DOTP与TOTM所增塑PVC材料硬度比其余四种高约5度(邵氏A)。DSC测试结果表明,TOTM及ATBC增塑PVC的Tg相对较高,约为-22℃,其余四种较为接近,约为-25℃。  相似文献   

11.
The poly(vinyl chloride) (PVC) industry plays an important role in today's total plastics industry. The major volume of PVC is used as soft and plasticized PVC. PVC applications consume approximately 80% of the total production of plasticizers. Most of the common plasticizers are aromatic esters of phthalic acid. In the majority of countries, phthalate plasticizers are banned due to their carcinogenic properties. The concern raised about toxicity led to a large demand for bio‐based non‐toxic plasticizers. Hence, there is an increasing interest in replacing the phthalate plasticizers with those produced from simple bio‐based materials. Dehydrated castor oil fatty acid (DCOFA) is a renewable resource which can be esterified and used as an environment friendly plasticizer for PVC. Benzyl ester (BE) was prepared by reacting DCOFA with benzyl alcohol in the presence of catalyst at 170–180 °C. Esterification was further confirmed by acid value, hydroxyl number, 1H NMR and Fourier transform IR spectroscopy. The modified plasticizer was used in various proportions as a co‐plasticizer in PVC for partial replacement of dioctyl phthalate (DOP). With an increase in the proportion of BE in PVC samples, a good plasticizing performance was observed. The incorporation of BE also resulted in a reduction in viscosity and viscosity pick‐up and improved mechanical, exudation, thermal degradation and chemical resistance properties. The presence of BE showed a reduction in the whiteness index due to presence of conjugated double bonds in the structure. The results of DSC, XRD and Shore hardness studies showed no significant variation in properties compared with those of DOP‐plasticized sheets and thus we can conclude that BE can be used as a co‐plasticizer in PVC. © 2013 Society of Chemical Industry  相似文献   

12.
In this work, poly(ε-caprolactone) (PCL) and liquid plasticizer were combined used to plasticize poly(vinyl chloride) (PVC), and the possibility of using PVC/PCL/plasticizer blends to fabricate soft PVC with enhanced migration resistance was investigated. Through partial replacement of liquid plasticizers in soft PVC by equal quantity of PCL, flexibility was maintained while extraction loss of plasticizer by organic solvent was reduced significantly. Furthermore, crystallization of PCL in PVC/PCL/plasticizer blends with low PCL content was observed, and crystallization rate of PCL was found to be influenced by plasticizer contents and structures. For instance, crystallization rate of PCL in PVC/PCL/diisononyl phthalate (DINP) (100/40/100) was 3.7 times faster than in PVC/PCL/DINP (100/40/80), while crystallization rate of PCL in PVC/PCL/dioctyl adipate(DOA)(100/40/100) was 8.3 times faster than in PVC/PCL/diisononyl cyclohexane-1,2-dicarboxylate (DINCH) (100/40/100). Low-field 1H NMR test manifested that different crystallization rate of PCL in PVC/PCL/plasticizer blends with different plasticizer structures was triggered by difference in plasticizers' compatibility with PVC, that is, the number of interaction point between PVC and plasticizers. It is concluded that PCL crystallization favored by liquid plasticizers in PVC/PCL/plasticizer blends was induced by interaction competition between PVC/plasticizer and PVC/PCL. As plasticizer content increases or its compatibility with PVC decreases, interaction competition becomes more intense and consequently faster crystallization of PCL occurs. Thus, to obtain soft PVC products with improve migration resistance while avoiding PCL crystallization, the total content of plasticizer (including both liquid plasticizer and PCL) should be lower than 66 phr (40 wt %). © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48803.  相似文献   

13.
The aim of this study was to assess the effect of montmorillonite nanofillers, Cloisite Na+ and Cloisite 30B, on the biodeterioration of PVC-based nanocomposites plasticized by means of dioctyl adipate (DOA), dioctyl phthalate (DOP) and modified poly(propylene adipate) (PPA), in the aerobic environment of soil (soil burial test, time of exposure: 198 days). Tests were carried out at 25 ± 1 °C, under moisture-controlled (55 %) and aerobic conditions. The extent of the biodeterioration process was evaluated on the basis of changes in weight, tensile strength and elongation-at-break values. Finally, analysing chemical structures using FTIR and visual observation, both macroscopic and microscopic via scanning electron microscopy assisted in the evaluation process. The results of this study suggested that plasticized PVC/montmorillonite nanocomposites have an increased susceptibility for undergoing biological deterioration in comparison with plasticized PVC. In each instance, adding Cloisite 30B resulted in reducing the resistance of PVC/montmorillonite nanocomposites to the actions of microorganisms. In the case of Cloisite Na+ as the filler, results cannot be clearly quantified, although a negative influence prevailed, particularly a change in colour, whose change intensity was also dependent on the type of plasticizer, increasing in the following sequence: PVC/DOA/Cloisite Na+ > PVC/DOP/Cloisite Na+ > PVC/PPA/Cloisite Na+. However, each sample containing Cloisite Na+ achieved a lower rate of degradation (by normalised weight loss and FTIR) compared with nanocomposites containing Cloisite 30B. This can be attributed to the migration and accumulation of Cloisite Na+ on the surface of the nanocomposites particles where the former phenomenon producing a surface barrier which caused a reduction in the permeability of the material toward water and microorganisms, during the test.  相似文献   

14.
Three common phthalates, namely, dioctyl phthalate, diisodecyl phthalate, and trioctyl trimellitate, were used as plasticizers for poly(vinyl chloride) (PVC) processing, and the extraction of these plasticizers were investigated using supercritical CO2 fluids. Factors affecting the extractions of these phthalates were focused. The molecular weight of phthalates was found to dominate the level of extraction of low temperatures, whereas the content of carbonyl groups in the phthalate was a determining factor for the level of extraction of high temperatures. Negligible extraction was observed below the critical pressure of CO2. For 32°C, the level of the extraction is insignificant below density of ca 0.7 g/cm3, above which the level of the extraction increases roughly linearly with increasing density. For temperatures above 32°C, the density of CO2 for apparent extractions decreased with increasing temperatures. The threshold density of CO2 for extractions was found to be independent of the amount of a given phthalate in PVC. Two extraction rates during the extraction could be determined, with a higher rate in the first hour followed by a lower rate later in the extraction for all three phthalates. The effects of the extractions of phthalates on the flexibility of PVC were also investigated as well as the effects of the extrusion conditions, which could lead to various degrees of plasticization of PVC, on the level of extractions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 4032–4037, 2003  相似文献   

15.
A new type of plasticizer, epoxidized cardanol butyl ether (ECBE), was synthesized via etherification and epoxidation. Successful synthesis was confirmed from Fourier transform infrared, 1H NMR and 13C NMR spectra. The obtained product was evaluated by adding it to poly(vinyl chloride) (PVC) incorporated with dioctyl phthalate (DOP). Mechanical and thermal properties of PVC blends were studied using tensile testing, thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Processability, migration and volatility of plasticizing systems were also investigated. Tensile tests found a maximum increase of 17.8% in elongation at break. DMA results indicated that glass transition temperature shifted to lower temperature with a maximum decrease of 5.76 °C. TGA results revealed that PVC blends with higher content of ECBE had higher thermal stability; initial degradation temperature, 50% weight loss temperature and the first peak degradation temperature increased by 15.3, 14.8 and 4.1 °C, respectively. Processing time was extended from 11.56 to 59.94 min. The plasticizing performance of migration and volatility resistance were higher than those of neat DOP. © 2016 Society of Chemical Industry  相似文献   

16.
This study aimed to optimize the ratio of dioctyl 4‐cyclohexene‐1,2‐dicarboxylate (DOTH) and di‐isononyl‐cyclohexane‐1,2‐dicarboxylate (DINCH®) for use as plasticizers in poly(vinyl chloride) (PVC) sheets. We also evaluated the biological safety of DOTH for its potential to be part of a safe PVC‐based blood container. The suppression of hemolysis in mannitol‐adenine‐phosphate / red cell concentrates (MAP/RCC) with DOTH/(DINCH®‐PVC) sheets and the elution of plasticizers from the sheets increased with higher DOTH compositions. The properties of the PVC sheet containing DOTH and DINCH® in the ratio of 25:33 parts against PVC 100 parts as a weight were almost identical to the PVC sheet made of di(2‐ethylhexyl) phthalate. From a subchronic toxicity test, DOTH did not show any adverse effects on all organs, including the testes, epididymis, liver, and kidneys. The no‐observed‐adverse‐effect level was 300 mg/kg body weight/day in a rat. These results suggest that DOTH/DINCH® (25:33) is a promising candidate for the replacement of di(2‐ethylhexyl) phthalate in blood containers. J. VINYL ADDIT. TECHNOL., 22:520–528, 2016. © 2015 Society of Plastics Engineers  相似文献   

17.
It has been found that dioctyl terephthalate (DOTP), a plasticizer for polyvinyl chloride (PVC), can be made from scrap terephthalate polyesters such as polyethylene terephthalate (PET) by a method known as degradative transesterification. It is recognized that this plasticizer is as good as plasticizer as commercial DOTP, and that it may potentially replace dioctyl phthalate (DOP). The production of DOTP from scrap PET is shown to be cost effective. The use of this technology may provide a solution to a part of our solid-waste problem.  相似文献   

18.
环保醚酯型增塑剂TP-95在PVC中的应用   总被引:2,自引:1,他引:1  
研究了环保醚酯型增塑剂TP-95和几种常用增塑剂对聚氯乙烯(PVC)的塑化效果、力学性能、耐寒性、耐热性及耐抽出性能的影响。结果表明:与添加的几种增塑剂相比,TP-95具有显著的增塑软化作用;随着增塑剂用量的增加,最低转矩明显下降,塑化时间缩短,塑化效果随之增强;与DOP和TOTM相比,TP-95表现出良好增塑效应及耐寒性;增塑剂用量均为50份时,TP-95的PVC开始热降解温度高于DOP和DOA;在水和环己烷介质中,随着随着增塑剂用量的增加,抽出损失随之增加;在环己烷介质中,TP-95的抽出损失为4.40%,低于TOTM和DOA,具有良好的耐抽出性。  相似文献   

19.
Oligo(isosorbide adipate) (OSA), oligo(isosorbide suberate) (OSS), and isosorbide dihexanoate (SDH) were synthesized and evaluated as renewable resource alternatives to traditional phthalate plasticizers. The structure of the synthesized oligomers was confirmed by nuclear magnetic resonance spectroscopy (1H‐ and 13C‐NMR), and molecular weight was determined by size exclusion chromatograph. The plasticizers were blended with poly(vinyl chloride) (PVC), and the miscibility and properties of the blends were evaluated by differential scanning calorimetry, fourier transform infrared spectroscopy, tensile testing, and thermogravimetry. Especially the blends plasticized with SDH had almost identical properties with PVC/diisooctyl phthalate (DIOP) blends. The blends containing OSA and OSS plasticizers, based on dicarboxylic acids, had somewhat lower strain at break but higher stress at break and better thermal stability compared to the PVC/DIOP or PVC/SDH blends. All the synthesized isosorbide plasticizers showed potential as alternative PVC plasticizers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
DOA, (di-2-ethylhexyl) adipate, is a monomeric ester plasticizer frequently used in PVC compositions to enhance flexibility at low temperatures. DOA has several drawbacks; it lacks permanence in the PVC matrix and it has poorer compatibility than its phthalate homologue (DOP). By reacting adipic acid with polyols, polymer chains of increased molecular weights can be formed. These polyester plasticizers offer increased permanence over DOA. The focus of this paper is to demonstrate how adipate plasticizers, starting with DOA and increasing in molecular weight, affect the performance of flexible vinyl, especially in regard to UV resistance and permanence. The following series of evaluations will show that as the molecular weight of plasticizers increases, the permanence properties (volatility and extraction by various media) increase. The ability to withstand degradation from ultraviolet light also increases with higher molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号