首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
目的:提高规模化生产的哈密瓜品质,缩短干燥周期。方法:以不同漂烫时间(0.5,1.0,1.5,2.0,2.5 min)、浸渍液(0.1%,0.2%,0.3%,0.4%,0.5%柠檬酸溶液)预处理哈密瓜切片,并分别研究不同热风温度(35,45,55,65,75℃)、热风速度(0.5,1.0,1.5,2.0,2.5 m/s)和切片厚度(2,4,6,8,10 mm)条件下的哈密瓜切片热风干燥特性和水分扩散系数,拟合不同薄层干燥数学模型。结果:0.4%柠檬酸预处理后得到品质最优的干制产品,热风温度和切片厚度对切片干燥影响较为显著,哈密瓜切片无恒速干燥阶段,有效水分扩散系数为1.1348×10-7~4.9080×10-7 m2/s,活化能为28.15 kJ/mol。结论:哈密瓜切片的最佳热风干燥工艺为热风温度55℃、热风速度2.0 m/s、切片厚度6 mm,Page模型具有最高的R2值和最小的均方根误差,更适于评估和预测哈密瓜热风干燥的水分去除规律。  相似文献   

2.
为了提高猕猴桃切片制干品质、缩短干燥时间,采用流化床干燥技术对其进行干燥,研究温度(55,65,75,85℃)、风速(1.5,2.5,3.5,4.5m/s)和厚度(5,10,15mm)对猕猴桃切片热风干燥曲线、水分有效扩散系数以及干燥活化能的影响。结果表明:猕猴桃切片的整个干燥过程属于降速干燥,水分有效扩散系数为1.29639×10-9~4.58994×10-9 m2/s,且随温度、风速的增大而升高,随切片厚度的减少而增大;猕猴桃切片活化能为23.03kJ/mol。对10种常见的干燥动力学模型进行拟合发现,Logarithmic模型效果最佳。  相似文献   

3.
目的 探讨氢氧化钙[Ca(OH)2]处理鲜马铃薯渣的干燥效率及其干燥动力学。方法 研究干燥温度(30、40、50、60℃)、相对湿度(13%、33%、54%、75%)和载物量(10、30、50、70 g)对Ca(OH)2处理鲜马铃薯渣的干燥曲线、干燥速率曲线、水分有效扩散系数以及干燥活化能的影响,并建立干燥动力学模型,将干燥特性曲线进行非线性拟合。结果 Ca(OH)2处理鲜马铃薯渣主要为降速干燥,干燥温度越高,相对湿度越低,载物量越少,鲜马铃薯渣的干燥速率越快,水分有效扩散系数为2.48554×10-11~13.15592×10-11 m2/s,干燥活化能为12.06kJ/mol。Logarithmic为Ca(OH)2处理鲜马铃薯渣拟合程度最好的干燥动力学模型。结论 经Ca(OH)2处理的鲜马铃薯渣较容易干燥,Logarithmic模型可以较好描述其水分变化规律,为描述和预测Ca(OH)2处理鲜马铃薯渣干燥过程中...  相似文献   

4.
采用正交实验对稻谷进行红外干燥,研究了稻谷在不同含水率、干燥温度和装载量干燥条件下的红外干燥特性,确定了稻谷最优红外干燥工艺方案,匹配了稻谷红外干燥在10种干燥数学模型中的应用情况,找出了稻谷最优红外干燥数学模型,结果表明:稻谷在干燥前期失水率变化较大,水分比下降较快,而干燥后期,失水率变化趋于平缓。对稻谷红外干燥工艺影响的3个主要因子排列顺序为:干燥温度B>装载量C>含水率A,且稻谷最优红外干燥方案为含水率36%、干燥温度60℃、装载量50 g,此时的稻谷最优干燥数学模型为Wang and Singh模型。当装载量和温度分别为50 g和70℃时,实验值和模型值的相对平均误差分别为0.901%和1.119%,进一步验证数据的实验值和模型值拟合度较好。随着干燥温度的升高,稻谷的有效水分扩散系数升高,当干燥温度从50℃提升到70℃时,稻谷有效水分扩散系数从10.72×10-10 m2/s增加至13.87×10-10 m2/s,此时稻谷的活化能为11.9 kJ/mol。  相似文献   

5.
目的:优化红枣片干燥工艺,改善产品品质。方法:以红枣片为研究对象,研究转换含水率、红外温度和切片厚度与干燥时间和干燥速率的相关关系,计算红枣片在FD-IRD中水分有效扩散系数随转换含水率、红外温度和切片厚度的变化规律,并根据试验数据计算红枣片FD-IRD的干燥活化能。结果:转换含水率越低,红外干燥时间越短,但过低的转换含水率,会使冷冻干燥时间大幅延长;适当提高红外干燥温度有利于提高水分有效扩散系数;红枣片越薄干燥速率越大,减小切片厚度能够提高水分有效扩散系数,利于缩短干燥时间;前后两段均为降速干燥过程,通过费克第二定律求解得到不同干燥条件下的冷冻干燥和红外干燥的水分有效扩散系数分别为3.39×10-9~9.47×10-9,3.34×10-9~2.01×10-8 m2/s;通过阿尼乌斯公式计算出红外干燥阶段干燥活化能为59.03 kJ/mol。结论:在转换含水率30%,红外温度60℃,切片厚度6 mm的条件下,冷冻—红外组合干燥技术所用干燥时间短、效率高。  相似文献   

6.
目的:实现南极磷虾旋转闪蒸干燥过程的控制。方法:对南极磷虾在120~180℃范围内进行干燥试验,选取常用的6种干燥模型对试验数据进行拟合,进一步采用回归分析建立干燥模型常数项与温度的方程,得到干燥模型表达式并进行验证。根据Fick第二定律方程计算得到南极磷虾干燥水分扩散系数。结果:干燥温度对干燥热效率和干燥速率的影响显著,干燥温度为130~180℃的南极磷虾干燥曲线均为降速干燥阶段。Page模型适合用来描述和预测南极磷虾旋转闪蒸干燥过程,回归分析得到模型常数项方程为k=exp(-27.532 1+0.301 8T-8.538 2×10-4T2)、n=14.010 6-0.157 67T+4.750 9×10-4T2。随着温度的升高,南极磷虾有效水分扩散系数从2.539 35×10-7 m2/s升高到13.889 64×10-7 m2/s。结论:采用旋转闪蒸干燥方式可以有效保护南极磷虾中的热敏性成分不被破坏,提高产...  相似文献   

7.
甘蓝型油菜籽热风干燥特性及其数学模型   总被引:7,自引:3,他引:4       下载免费PDF全文
油菜籽的干燥和储存直接影响种用油菜籽的生理特性和作物产量以及加工用油菜籽的加工特性和制油品质,为了给油菜籽热风干燥装置设计、工艺和过程控制优化提供基础依据,本文研究了不同初始含水率、热风温度和风速条件下甘蓝型油菜籽的热风干燥特性,比较了10种数学模型在甘蓝型油菜籽热风干燥中的适用性。结果表明:油菜籽热风干燥过程没有出现明显的恒速干燥阶段,干燥主要发生在降速干燥阶段;Page模型是描述油菜籽干燥特性的最佳数学模型,由模型预测的干燥特性曲线与实验所得的干燥曲线一致性好;热风温度是影响油菜籽热风干燥的主要因素,随着热风温度的升高,油菜籽的有效水分扩散系数增大,当热风温度从45℃增加到65℃时,其有效水分扩散系数由3.835×10-10 m2/s增加到7.666×10-10 m2/s,油菜籽的干燥活化能为29.26 kJ/mol。  相似文献   

8.
本文以干燥特性、色泽、复水性以及抗坏血酸保留率为评价指标,研究了不同干燥温度(60、70、80、90℃)下中短波红外辐射和热风干燥对番木瓜片品质的影响。结果表明:与热风干燥相比,相同温度条件下中短波红外干燥速率更快,所需干燥时间更短;随着干燥温度的升高,两种干燥方式下的水分有效扩散系数均呈升高趋势,番木瓜片中短波红外干燥和热风干燥水分有效扩散系数分别为0.58546×10-10~9.87313×10-10 m2/s、0.01179×10-10~4.88646×10-10 m2/s;番木瓜片中短波红外干燥的活化能32.13 k J/mol低于热风干燥的活化能33.28 k J/mol;此外,中短波红外干燥后番木瓜片的色泽和产品的复水性更好,而番木瓜片的中短波红外干燥抗坏血酸保留率低于热风干燥。综合考虑,试验范围内中短波红外干燥温度为70℃条件下所得产品的品质最好。  相似文献   

9.
探讨不同干燥温度和不同切片厚度条件下番木瓜的热风干燥特性。通过9种数学模型对番木瓜热风干燥试验数据进行拟合,结果表明:同大多数农产品干燥一样,番木瓜热风干燥主要为降速过程。不同干燥温度和物料厚度番木瓜热风干燥的水分有效扩散系数Deff的变化范围分别是1.798 4×10-8~3.323 3×10-8,0.579 3×10-8~2.852 2×10-8 m2/s,由此可以看出番木瓜热风干燥的水分有效扩散系数随着干燥温度和物料厚度的增大而增大;Page模型是番木瓜热风干燥过程的最适模型,平均R2值、SSE值、RMSE值和X2值分别为0.998 1,0.003 3,0.012 4,0.000 2。经回归分析,得到温度、厚度与有效水分扩散系数Deff的关系表达式。研究结果可以为生产实践中预测番木瓜热风干燥的水分变化提供参考。  相似文献   

10.
为提高马铃薯片的热风干燥效率及品质,控制其干燥过程中的收缩变形,本文研究了不同热风温度(45、55、65、75 ℃)和切片厚度(3、5、7、9 mm)对马铃薯片热风干燥特性曲线、有效水分扩散系数及活化能等指标的影响。结果表明,干燥室内热风温度越高、马铃薯切片厚度越小时,干燥速率越快。在研究范围内,马铃薯片的有效水分扩散系数在5.02×10?10~11.53×10?10 m2/s范围内,其值随热风温度升高或切片厚度减小而增大。此外,研究发现Weibull分布函数能够很好地描述马铃薯片的降速干燥过程和收缩动力学模型。通过Arrhenius方程计算得到马铃薯片的干燥活化能和收缩活化能分别为27.35和46.44 kJ/mol,马铃薯片干燥比收缩消耗活化能少。本研究为马铃薯片在热风干燥加工中水分迁移和体积收缩变化的预测提供了理论依据和技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号