首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Sulfation treatment has been widely used to promote the catalytic performance of ceria(CeO2) based catalysts for the selective catalytic reduction of NO by NH3(NH3-SCR of NO).Praseodymium oxide(PrOx),another commonly used rare earth material with similar structural properties as CeO2,also shows satistactory redox properties due to the facile redox cycle of Pr3+■Pr4+.In this work,gas phase sulfation treatment with varied...  相似文献   

2.
Revealing the active species of the catalyst is conducive to the design of more efficient catalyst. Herein, we tried to demonstrate the roles of amorphous and crystalline structures on CePO4 catalyst during selective catalytic reduction (SCR) of NOx by NH3. Higher calcination temperature promotes the transfer of amorphous structure to crystalline structure on the surface of CePO4. Both amorphous and crystalline CePO4 species on CePO-X samples can provide acid sites for NH3 adsorption, but the former can provide more acid sites. The superior redox property of surface amorphous CePO4 species contributes to its high NH3-SCR activity at low temperature, but it also leads to the decrease of high temperature (>350 °C) NH3-SCR activity due to the oxidation of NH3. In contrast, crystalline CePO4 species shows high activity only at high temperature because of its poor redox property. Therefore, it can be inferred that amorphous and crystalline structures on CePO4 catalyst can be the efficient active species of NH3-SCR at low and high temperature, respectively.  相似文献   

3.
In the work, supported catalysts of FeOx and MnOx co-supported on aluminum-modified CeO2 was synthesized for low-temperature NH3-selective catalytic reduction (NH3-SCR) of NO. Impressively, the SCR activity of the obtained catalyst is markedly influenced by the adding amount of Al and the appropriate Ce/Al molar ratio is 1/2. The activity tests demonstrate that Fe–Mn/Ce1Al2 catalyst shows over 90% NO conversion at 75–250 °C and exhibits better SO2 resistance compared to Fe–Mn/CeO2. Fe–Mn/Ce1Al2 shows the expected physicochemical characters of the ideal catalyst including the larger surface and increased active reaction active sites by controlling the amount of Al doping. Also, the better catalytic activity is well correlated with the present advantaged surface adsorption oxygen species, Mn4+ species, Ce3+ species and the enhanced reducibility of Fe–Mn/Ce1Al2, which is superior to the Fe–Mn/CeO2 catalyst. More importantly, we further demonstrate that the amount and strength of surface acid sites are improved by Al-doping and more active intermediates (monodentate nitrate) is generated during NH3-SCR reaction. This work provides certain insight into the rational creation of simple and practical denitration catalyst environmental purification.  相似文献   

4.
The selective catalytic reduction(SCR) of NOx with NH3(NH3-SCR) technology has been widely applied for reducing NOx emissions from stationary and mobile sources.In this work,the extruded monolith MnOx-CeO2-TiO2 catalyst was installed in a cement kiln for NH3-SCR of NOx,where the flue gas temperature was 110-140℃.It is found that the monolith catalyst is severely deactivated after operating for abou...  相似文献   

5.
Mesoporous CeMnOx composite oxides catalysts were prepared by surfactant-assisted co-precipitation method and used for the catalytic oxidation of toluene.The effect of different cerium precursors[Ce(NO_3)_3 and(NH_4)_2 Ce(NO_3)_6] on catalyst structure,surface properties and toluene combustion activities of mesoporous CeMnO_x catalysts were investigated.The Ce(Ⅲ)MnO_x catalyst prepared from Ce(NO_3)_3 precursor shows higher catalytic activity,with a 90% conversion temperature of 240℃,which is better than the Ce(Ⅳ)MnO_x catalyst derived from(NH_4)_2 Ce(NO_3)_6] precursor.On the basis of characterizations,it reveals that abundant surface content of Mn~(4+),better redox behavior and larger concentration of surface active oxygen species are responsible for the excellent catalytic performance.  相似文献   

6.
The MnXOx catalysts(i.e.,MnSmOx,MnNdOx,MnCeOx) were prepared by reverse co-precipitation method and used for NH3-SCR reaction.It is found that MnCeOx catalyst presents the best low tempe rature catalytic activity(higher than 90% NOx conversion in the te mperature range from 125 to 225℃)and excellent H2O+SO2 resistance.In order to explore the reason for this result,the characterization of X-ray diff...  相似文献   

7.
The effect of manganese and/or ceria loading of V_2 O_5-Mo_O_3/TiO_2 catalysts was investigated for selective catalytic reduction(SCR) of NO_x by NH_3.The manganese and/or ceria loaded V_2 O_5-MoO_3/TiO_2 catalysts we re prepared by the wetness impregnation method.The physicochemical characteristics of the catalysts were thoroughly characterized.The catalytic performance of 1.5 wt% V_2 O_5-3 wt% MoO_3/TiO_2(V1.5 Mo3/Ti) is greatly enhanced by addition of 2.5 wt% MnO_x and 3.0 wt% CeO_2(V1.5 Mo3 Mn2.5 Ce3/Ti) below450℃.Compared with the V1.5 Mo3/Ti catalyst with NO_x conversion of 75% at 275 ℃,V1.5 Mo3 Mn2.5 Ce3/Ti exhibits higher NO_x conversion of 84% with good resistance to SO_2 and H_2 O at a gas hourly space velocity value of 150000 h~(-1).The active manganese,cerium,molybdenum,and vanadium oxide species are highly dispersed on the catalyst surface and some synergistic effects exist among these species.Addition of MnO_x significantly enhances the redox ability of the cerium,vanadium,and molybdenum species.Addition of Ce increases the acidity of the catalyst.More active oxygen species,including surface chemisorbed oxygen,form with addition of Mn and/or Ce.Because of the synergistic effects,appropriate proportions of manganese in different valence states exist in the catalysts.In summary,the good redox ability and the strong acidity contribute to the high NH3-SCR activity and N2 selectivity of the V1.5 Mo3 Mn2.5 Ce3/Ti catalyst in a wide temperature range.And the V1.5 Mo3 Mn2.5 Ce3/Ti catalyst shows good resistance to H_2 O and SO2 in long-time catalytic testing,which can be ascribed to the highly sulfated species adsorbed on the catalyst.  相似文献   

8.
In this study, the promotion effect of H2 pretreatment on the SCR performance of CeO2 catalyst was investigated based on the characterization results of XRD, H2-TPR, Raman and in situ DRIFT techniques. Lower crystallinity, higher reducibility and surface acidity can be found on CeO2-H catalyst. The results of DRIFT study reveal that the pretreatment of CeO2 catalyst with H2 can facilitate the adsorption of NH3 and NOx species, while the adsorbed NOx is basically inactive in the NH3-SCR reaction. Moreover, the reaction mechanism of the NH3-SCR reaction over CeO2 catalyst is not changed by H2 pretreatment, which is mainly under the control of Eley-Rideal (E-R) mechanism. The enhanced SCR performance of CeO2-H catalyst is mainly due to the promoted NH3 adsorption and the subsequent facilitation of SCR reaction through E-R pathway.  相似文献   

9.
The Mn-Ce-Nb-O_x/P84 catalytic filter for removal of particulates and NO simultaneous was prepared by a novel method(foam coating method). The process parameters including the concentrations of PTFE emulsion, particle size of catalyst and calcination temperature for preparation of catalytic filters were analyzed. In addition, the physical properties and performance for removal of NO(NH_3-SCR) and particulates of Mn-Ce-Nb-O_x/P84 catalytic filter prepared under the optimized parameters, were also systematic studied. Results show that the process parameters had significant influences on stability and performance of catalytic filter, The Mn-Ce-Nb-O_x/P84 catalytic filter prepared by foam coating method under the optimized parameters, has satisfactory physical properties and catalytic performance for removal of NO and particulates at 140-220 ℃. The NO removal efficiency of catalytic filter can reach95.3% at 200 ℃ as the catalyst loading amount is 450 g/m~2, Moreover,the dust removal efficiency of MnGe-Nb-O_x/P84 catalytic filter reaches as high as 99.98%, and the PM2.5 removal efficiency also reaches99.98%. The anti-sulfur performance of Mn-Ce-Nb-O_x catalytic filter is also attractive, after injecting150 ppm SO_2, the NO removal efficiency still retains up to 85%. It is indicated that the foam coating method can not only make a bond of high strength between catalyst and filter, but also make the catalytic filter possessing an excellent and stable performance for removal of NO and particulates.  相似文献   

10.
A series of Sm–Mn mixed oxide catalysts were prepared via precipitation using various precipitants, namely Na2CO3 (NH4)2CO3, and NH3·H2O, and evaluated for the selective catalytic reduction (SCR) of NOx with NH3 at low temperatures. Various characterisation techniques were used to determine the physicochemical properties of the catalysts, and it is found that their catalytic performance is greatly influenced by the nature of the precipitation agent used. It is found that Sm0.1Mn–Na2CO3 and Sm0.1Mn-(NH4)2CO3 exhibit superior catalytic performance in the SCR reaction to that of Sm0.1Mn–NH3·H2O due to an abundance of surface acid sites, high surface concentration of Mn4+, and high NO oxidation capacity. From in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) analysis, we conclude that the Sm–Mn catalysts follow both Eley-Rideal and Langmuir–Hinshelwood mechanisms, and that the Eley-Rideal mechanism is dominant at elevated temperatures.  相似文献   

11.
Fe-based catalysts have a great potential to be used for selective catalytic reduction(SCR) of NO_x with NH3 reaction due to their low cost,nontoxicity and excellent catalytic activity.The aim of this paper is to investigate Ce doping effect on activity of NH_3-SCR over the FeO_x/TiO_2 catalyst.In-situ diffuse reflectance infrared fourier transform(DRIFT) technology was utilized to verity the adsorbed species on the surface of FeO_x/TiO_2 and FeO_x-CeO_2/TiO_2 catalysts.With respect to the obtained results,among the four catalysts studied,the FeO_x-CeO_2/TiO_2 with the FeO_x/CeO_2 ratio of 3/8 shows the best NO conversion more than 98%in the temperature range of 230—350℃,The active centers for NH_3 adsorption and activation are assigned to Lewis acid sites over the FeO_x-CeO_2/TiO_2 and monodentate nitrates can act as the key intermediate in the NH3-SCR.Moreover,both of Langmuir-Hinshelwood and Eley-Rideal mechanisms are observed over the FeO_x-CeO_2/TiO_2 catalysts in the SCR.  相似文献   

12.
Large amounts of water containing-ammonium nitrogen(NH4+-N)have attracted increasing attention.Catalytic ozonation technology,involving the generation of hydroxyl radical(OH)with strong oxidation ability,was originally utilized to degrade organic-containing wastewater.In this paper,Ce/MnOx composite metal oxide catalysts prepared with different preparation conditions were used to degrade wastewater containing inorganic pollutant(NH4+-N).The as-prepared catalyst features were characterized using X-ray diffraction(XRD),Brunauer-Emmett-Teller method(BET),scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS)and H2-temperature programmed reduction(H2-TPR)techniques.The results show that the catalyst,prepared by conditions with precipitant Na2CO3 and Ce/Mn molar ratio 1:2 calcined at 400℃for 3 h in pH 11.0,displays the optimal performance,with the removal rate of NH4+-N and selectivity to gaseous nitrogen,88.14 wt%and 53.67 wt%,respectively.The effects of several operating factors including solution pH,initial NH4+-N concentrations and scavengers were evaluated.In addition,XRD patterns of catalyst with the best performance and the comparative study on decontamination of NH4+-N by various processes(O3,catalyst and catalyst/O3)show that the primary metal oxides are CeO2 and MnO2 in Ce/MnOx composite metal oxide catalysts,which have a synergistic effect on the catalytic ozonation of NH4+-N,and the new phase MnO2 plays a great role.After 5 consecutive use cycles,the degradation efficiency is declined slightly,and can still achieve better than 70 wt%over 1 h reaction.Additionally,the application of catalytic ozonation for actual wastewater on the removal rate of NH4+-N was investigated.Possible mechanism and degradation pathway of NH4+-N were also proposed.In a word,the application of CeO2-MnO2 composite metal oxide catalysts in catalytic ozonation can be regarded as an effective,feasible and promising method for the treatment of NH4+-N.  相似文献   

13.
In this work we prepared several CeO2-TiO2 catalysts for the NH3-SCR reactionusing co-precipitation with assistance of microwave irradiation. The catalytic NH3-SCR activities over CeO2-TiO2 catalysts at low temperatures are largely enhanced by the treatment of microwave irradiation, the operation temperature window is also broadened. For better understanding the promotion mechanism, the catalyst prepared by conventional co-precipitation with and without microwave irradiation treatment was characterized with H2-TPR, NH3-TPD, XPS, XRD and BET. Microwave irradiation treatment accelerates the crystallite rate of CeO2-TiO2 catalysts, and greatly enlarges their surface area by adjusting their microstructures. The resistance to SO2 and H2O is also improved via regulating the hierarchical pore structure by the microwave irradiation. Microwave irradiation treatment can also improve the redox property and increase the acid sites over the catalyst surfaces. The result of in situ DRIFTS suggests that the microwave irradiation treatment generates more Brønsted acid sites on CeO2-TiO2-2 h catalyst, helpful in SCR reactions. XPS results show that after microwave irradiation on the CeO2-TiO2 catalysts, the surface demonstrates an elevated concentration of chemisorbed oxygen, consequently leading to better oxidation of NO to NO2. Additionally, the molar ratio of Ce3+/Ce4+ has been elevated after being treated by microwave irradiation, a vital factor in enhancing the NH3-SCR activities.  相似文献   

14.
Traditional vanadium-based selective catalytic reduction(SCR) deNOx catalyst can hardly adapt to the gas conditions(much high NO2/NOx ratio at lower temperature) of the start-up and low loading periods for a gas turbine.Therefore,a W-Ti-CeOx catalyst with NOx storage and reduction(NSR)function was developed in this work for gas turbine exhaust NOx elimination.The experimental results reveal that W-Ti-CeOx catalyst exhibits high NO...  相似文献   

15.
This study explored the superior citrate method(CM)to synthesize Mn-Ce bi-oxides on 3 D monolithic Ni-foam(NF)catalysts for the selective catalytic reduction of NO by NH3(NH3-SCR).The 17 wt%Mn(7)Ce(3)Ox/NF(CM-17)catalyst shows the NOxconversion of 98.7%at 175℃and 90%in the presence of 10 vol%H2 O.It is revealed that the combination of surface-active oxygen(formed by high-level oxygen vacancies)and strongly oxidized Mn4+species promots the Fast-SCR reactions,in which Mn4+species play a leading role in NH3-SCR reaction,and the unsaturated Ni atoms and also Ce3+species promote electron exchange and thus improve the redox performance.The coexistence mechanisms of Fast-SCR reactions and E-R pathways are observed over Mn-CeOx/NF catalyst,which may be promoted by the Br?nsted sites at low temperature.In addition,the heat resistance,stability,3 D monolithic porous structure and excellent physical properties of foam nickel provide a unique growth substrates for catalysts preparation and reaction sites for NOxpurification.Therefore,industrial application of Mn-Ce bioxides loaded on 3 D monolithic is proposed to be achieved through reasonable preparation methods.  相似文献   

16.
Excellent catalysts with low-temperature activity and relatively wide temperature window for selective catalytic reduction of NO with ammonia (NH3-SCR) are highly demanded in view of the practical treatment of NO. Herein, we have designed a highly active VOx-MnOx/CeO2 material based on the intrinsic requirement of SCR reaction for catalyst, namely redox sites and surface acid sites. The vanadium oxide and manganese oxide are highly dispersed over the ceria mesosphere via simple incipient wetness impregnation. The loading of manganese could introduce acid sites and enhance the redox property remarkably, while the loading of vanadium increases acid sites and weakens redox property. Through tentatively controlling the appropriate loading ratio of the two components, the optimal catalyst achieves a balance between redox property and surface acidity. The work shed light on the development of new SCR catalyst with superior low temperature activity, wide work temperature window and good hydrothermal stability.  相似文献   

17.
A series of catalysts were prepared by doping different loadings of CeO2 over TiO2-SiO2-WO3 and used for the selective catalytic reduction of NOx by NH3. The experimental results showed that the selective catalytic reduction(SCR) performance and SO2-resistant ability of TiO2-SiO2-WO3 were greatly enhanced by the introduction of cerium. The catalyst containing 10% CeO2 showed the highest NO conversion in a wide temperature range and good N2 selectivity with broad operation temperature window at the gas hourly space velocity(GHSV) of 30000 h–1, which was a very promising catalyst for NOx abatement from diesel engine exhaust. The catalysts were characterized by X-ray diffraction(XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy(SEM-EDS), N2 adsorption-desorption(BET) and X-ray photoelectron spectroscopy(XPS). The characterization results showed that the bigger pore radius, higher surface atomic concentration and dispersion of Ce and the abundant adsorbed oxygen on the surface of catalyst contributed to the best NH3-SCR performance of CeO2/TiO2-SiO2-WO3 catalyst containing 10% CeO2.  相似文献   

18.
The CeO2, Ce–Nb–Ox and Nb2O5 catalysts were synthesized by citric acid method and the promotion effect of Nb on ceria for selective catalytic reduction (SCR) of NO with NH3 was investigated. The catalytic activity measurements indicate that the mixed oxide Ce–Nb–Ox presents a higher SCR activity than the single oxide CeO2 or Nb2O5 catalyst. In addition, the Ce–Nb–Ox catalyst shows high resistance towards H2O and SO2 at 280 °C. The Raman, X-ray photoelectron spectra and temperature programmed reduction with H2 results indicate that the incorporation of Nb provides abundant oxygen vacancies for capturing more surface adsorbed oxygen, which provides a superior redox capability and accelerates the renewal of active sites. Furthermore, the Fourier transform infrared spectra and temperature programmed desorption of NH3 results suggest that niobium pentoxide shows high surface acidity, which is partly retained in the Ce–Nb–Ox catalyst possessing a high content of Lewis and Brønsted acid sites. Therefore, the incorporation of Nb improves both the redox and acidic capacities of Ce–Nb–Ox catalyst for the SCR reaction. Here, the redox behavior is primarily taken on Ce and the acidity is well improved by Nb, so the synergistic effect should exist between Ce and Nb. In terms of the reaction mechanism, in situ DRIFT experiments suggest that both NH3 on Lewis acid sites and NH4+ on Brønsted acid sites can react with NO species, and adsorbed NO and NO2 species can both be reduced by NH3. In the SCR process, O2 primarily acts as the accelerant to improve the redox and acid cycles and plays an important role. This work proves that the combination of redox and acidic properties of different constituents can be feasible for catalyst design to obtain a superior SCR performance.  相似文献   

19.
The cerium-based catalysts were investigated for the catalytic co mbustion of trichlo roethylene(TCE) and exhibit a surprising catalytic activity.MnOx was doped into CeO2 by a citric acid(CA) sol-gel method,and the effect of Mn content on the physicochemical properties and catalytic activities of MnOx-CeO2 mixed oxides was investigated systemically.The introduction of MnOx into CeO2 can evidently improve the catalytic activity and...  相似文献   

20.
Alkali metal K in exhaust gas has a deactivation effect on NH3-SCR catalysts.In this work,it is discovered that the addition of Ho on CeTi catalyst can remarkably strengthen its K tolerance.The conclusions of Brunauer-Emmett-Teller(BET),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),NH3 temperature programmed desorption(NH3-TPD)and H2temperature programmed reduction(H2-TPR)analyses demonstrate that the enhancement of K resistance mainly originates from its stronger surface acidity and redox capability,the higher concentration of Ce3+species and surface chemisorbed oxygen.In situ DRIFT analysis reveals that the introduction of Ho on CeTi can remarkably improve the adsorption of NH3 and NOx species on catalyst surface,accompanied by the intensified reactivity of ad-NH3 species,which should also administer to improve the K resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号