首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Let L(x) denote the number of square-full integers not exceeding x. It is proved in [1] thatL(x)~(ζ(3/2)/ζ(3))x~(1/2) (ζ(2/3)/ζ(2))x~(1/3) as x→∞,where ζ(s) denotes the Riemann zeta function. Let △(x) denote the error function in the asymptotic formula for L(x). It was shown by D. Suryanaryana~([2]) on the Riemann hypothesis (RH) that1/x integral from n=1 to x |△(t)|dt=O(x~(1/10 s))for every ε>0. In this paper the author proves the following asymptotic formula for the mean-value of △(x) under the assumption of R. H.integral from n=1 to T (△~2(t/t~(6/5))) dt~c log T,where c>0 is a constant.  相似文献   

2.
Based on [3] and [4],the authors study strong convergence rate of the k_n-NNdensity estimate f_n(x)of the population density f(x),proposed in [1].f(x)>0 and fsatisfies λ-condition at x(0<λ≤2),then for properly chosen k_nlim sup(n/(logn)~(λ/(1 2λ))丨_n(x)-f(x)丨C a.s.If f satisfies λ-condition,then for propeoly chosen k_nlim sup(n/(logn)~(λ/(1 3λ)丨_n(x)-f(x)丨C a.s.,where C is a constant.An order to which the convergence rate of 丨_n(x)-f(x)丨andsup 丨_n(x)-f(x)丨 cannot reach is also proposed.  相似文献   

3.
In this paper initial value problems and nonlinear mixed boundary value problems for the quasilinear parabolic systems below $\[\frac{{\partial {u_k}}}{{\partial t}} - \sum\limits_{i,j = 1}^n {a_{ij}^{(k)}} (x,t)\frac{{{\partial ^2}{u_k}}}{{\partial {x_i}\partial {x_j}}} = {f_k}(x,t,u,{u_x}),k = 1, \cdots ,N\]$ are discussed.The boundary value conditions are $\[{u_k}{|_{\partial \Omega }} = {g_k}(x,t),k = 1, \cdots ,s,\]$ $\[\sum\limits_{i = 1}^n {b_i^{(k)}} (x,t)\frac{{\partial {u_k}}}{{\partial {x_i}}}{|_{\partial \Omega }} = {h_k}(x,t,u),k = s + 1, \cdots N.\]$ Under some "basically natural" assumptions it is shown by means of the Schauder type estimates of the linear parabolic equations and the embedding inequalities in Nikol'skii spaces,these problems have solutions in the spaces $\[{H^{2 + \alpha ,1 + \frac{\alpha }{2}}}(0 < \alpha < 1)\]$.For the boundary value problem with $\[b_i^{(k)}(x,t) = \sum\limits_{j = 1}^n {a_{ij}^{(k)}} (x,t)\cos (n,{x_j})\]$ uniqueness theorem is proved.  相似文献   

4.
Let S~* be the class of functionsf(z)analytic,univalent in the unit disk|z|<1 andmap|z|<1 onto a region which is starlike with respect to w=0 and is denoted as D_f.Letr_0=r_0(f)be the radius of convexity of f(2).In this note,the author proves the following result:(d_0/d~*)≥0.4101492,where d_0= f(z),d~*=|β|.  相似文献   

5.
In this paper the author discusses the quasilinear parabolic equation $$\[\frac{{\partial u}}{{\partial t}} = \frac{\partial }{{\partial {x_i}}}[{a_{ij}}(x,t,u)\frac{{\partial u}}{{\partial {x_j}}}] + {b_i}(x,t,u)\frac{{\partial u}}{{\partial {x_i}}} + c(x,t,u)\]$$ Which is uniformly degenerate at $\[u = 0\]$. Let $\[u(x,t)\]$ be a classical solution of the equation satisfying $\[0 < u(x,t) \le M\]$. Under some assumptions the author establishes the interior estimations of Holder coefficient of the solution for the equation and the global estimations for Cauchy problems and the first boundary value problems, where Holder ooeffioients and exponents are independent of the lower positive bound of $\[u(x,t)\]$.  相似文献   

6.
AIn this paper, the author obtains the following results:(1) If Taylor coeffiients of a function satisfy the conditions:(i),(ii),(iii)A_k=O(1/k) the for any h>0 the function φ(z)=exp{w(z)} satisfies the asymptotic equality the case h>1/2 was proved by Milin.(2) If f(z)=z α_2z~2 …∈S~* and,then for λ>1/2  相似文献   

7.
In the present paper, we show that there exist a bounded, holomorphic function $\[f(z) \ne 0\]$ in the domain $\[\{ z = x + iy:\left| y \right| < \alpha \} \]$ such that $\[f(z)\]$ has a Dirichlet expansion $\[\sum\limits_{n = 0}^{ + \infty } {{d_n}{e^{ - {u_n}}}} \]$ in the halfplane $\[x > {x_f}\]$ if and only if $\[\frac{a}{\pi }\log r - \sum\limits_{{u_n} < r} {\frac{2}{{{u_n}}}} \]$ has a finite upperbound on $\[[1, + \infty )\]$, where $\[\alpha \]$ is a positive constant,$\[{x_f}( < + \infty )\]$ is the abscissa of convergence of $\[\sum\limits_{n = 0}^{ + \infty } {{d_n}{e^{ - {u_n}}}} \]$ and the infinite sequence $\[\{ {u_n}\} \]$ satisfies $\[\mathop {\lim }\limits_{n \to + \infty } ({u_{n + 1}} - {u_n}) > 0\]$. We also point out some necessary conditions and sufficient ones Such that a bounded holomorphic function in an angular(or half-band) domain is identically zero if an infinite sequence of its derivatives and itself vanish at some point of the domain. Here some result are generalizations of those in [4].  相似文献   

8.
9.
The paper considers the random L-Dirichlet seriesf(s,ω)=sum from n=1 to ∞ P_n(s,ω)exp(-λ_ns)and the random B-Dirichlet seriesψτ_0(s,ω)=sum from n=1 to ∞ P_n(σ iτ_0,ω)exp(-λ_ns),where {λ_n} is a sequence of positive numbers tending strictly monotonically to infinity, τ_0∈R is a fixed real number, andP_n(s,ω)=sum from j=1 to m_n ε_(nj)a_(nj)s~ja random complex polynomial of order m_n, with {ε_(nj)} denoting a Rademacher sequence and {a_(nj)} a sequence of complex constants. It is shown here that under certain very general conditions, almost all the random entire functions f(s,ω) and ψ_(τ_0)(s,ω) have, in every horizontal strip, the same order, given byρ=lim sup((λ_nlogλ_n)/(log A_n~(-1)))whereA_n=max |a_(nj)|.Similar results are given if the Rademacher sequence {ε_(nj)} is replaced by a steinhaus seqence or a complex normal sequence.  相似文献   

10.
The paper deals with the following boundary problem of the second order quasilinear hyperbolic equation with a dissipative boundary condition on a part of the boundary:u_(tt)-sum from i,j=1 to n a_(ij)(Du)u_(x_ix_j)=0, in (0, ∞)×Ω,u|Γ_0=0,sum from i,j=1 to n, a_(ij)(Du)n_ju_x_i+b(Du)u_t|Γ_1=0,u|t=0=φ(x), u_t|t=0=ψ(x), in Ω, where Ω=Γ_0∪Γ_1, b(Du)≥b_0>0. Under some assumptions on the equation and domain, the author proves that there exists a global smooth solution for above problem with small data.  相似文献   

11.
The paper proves on the basis of [1] the following theorem: Let $\[f(z)\]$ be an entire function of lower order $\[\mu < \infty \]$, and $\[{a_i}(z)(l = 1,2, \cdots ,k)\]$ be meromorphic functions which satisfy $\[T(r,{a_i}(z)) = o\{ T(r,f)\} \]$. If $$\[\sum\limits_{i = 1}^k {\delta ({a_i}(z),f) = 1\begin{array}{*{20}{c}} {({a_i}(z) \ne \infty )}&{(1)} \end{array}} \]$$ then the deficiencies $\[\delta ({a_i}(z),f)\]$ are equal to $\[\frac{{{n_1}}}{\mu }\]$, where $\[{n_i}\]$ is an integer,$\[l = 1,2, \cdots ,k\]$.  相似文献   

12.
Let X_1,…,X_n be a sequence of independent identically distributed random variableswith distribution function F and density function f.The X_are censored on the right byY_i,where the Y_i are i.i.d.r.v.s with distribution function G and also independent of theX_i.One only observesLet S=1-F be survival function and S be the Kaplan-Meier estimator,i.e.,where Z_are the order statistics of Z_i and δ_((i))are the corresponping censoring indicatorfunctions.Define the density estimator of X_i by where =1-and h_n(>0)↓0.  相似文献   

13.
In this paper we study the first and tiie third boundary value problems for the elliptic equation \[\begin{array}{l} \varepsilon \left( {\sum\limits_{i,j = 1}^m {{d_{i,j}}(x)\frac{{{\partial ^2}u}}{{\partial {x_i}\partial {x_j}}} + \sum\limits_{i = 1}^m {{d_i}(x)\frac{{\partial u}}{{\partial {x_i}}} + d(x)u} } } \right) + \sum\limits_{i = 1}^m {{a_i}(x)\frac{{\partial u}}{{\partial {x_i}}} + b(x) + c} \ = f(x),x \in G(0 < \varepsilon \le 1), \end{array}\] as the degenerated operator bas singular points, where \[\sum\limits_{i,j = 1}^m {{d_{i,j}}(x){\xi _i}{\xi _j}} \ge {\delta _0}\sum\limits_{i = 1}^m {\xi _i^2} ,({\delta _0} > 0,x \in G).\] The uniformly valid asymptotic solutions of boundary value problems have been obtained under the condition of \[\sum\limits_{i = 1}^m {{a_i}(x){n_i}(x){|_{\partial G}} > 0,or} \sum\limits_{i = 1}^m {{a_i}(x){n_i}(x){|_{\partial G}} < 0} ,\] where \(n = ({n_1}(x),{n_2}(x), \cdots ,{n_m}(x))\) is the interior normal to \({\partial G}\).  相似文献   

14.
In this paper, the author proves the existence and uniqueness of nonnegative solution for the first boundary value problem of uniform degenerated parabolic equation $$\[\left\{ {\begin{array}{*{20}{c}} {\frac{{\partial u}}{{\partial t}} = \sum {\frac{\partial }{{\partial {x_i}}}\left( {v(u){A_{ij}}(x,t,u)\frac{{\partial u}}{{\partial {x_j}}}} \right) + \sum {{B_i}(x,t,u)} \frac{{\partial u}}{{\partial {x_i}}}} + C(x,t,u)u\begin{array}{*{20}{c}} {}&{(x,t) \in [0,T]} \end{array},}\{u{|_{t = 0}} = {u_0}(x),x \in \Omega ,}\{u{|_{x \in \partial \Omega }} = \psi (s,t),0 \le t \le T} \end{array}} \right.\]$$ $$\[\left( {\frac{1}{\Lambda }{{\left| \alpha \right|}^2} \le \sum {{A_{ij}}{\alpha _i}{\alpha _j}} \le \Lambda {{\left| \alpha \right|}^2},\forall a \in {R^n},0 < \Lambda < \infty ,v(u) > 0\begin{array}{*{20}{c}} {and}&{v(u) \to 0\begin{array}{*{20}{c}} {as}&{u \to 0} \end{array}} \end{array}} \right)\]$$ under some very weak restrictions, i.e. $\[{A_{ij}}(x,t,r),{B_i}(x,t,r),C(x,t,r),\sum {\frac{{\partial {A_{ij}}}}{{\partial {x_j}}}} ,\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}} \in \overline \Omega } \times [0,T] \times R,\left| {{B_i}} \right| \le \Lambda ,\left| C \right| \le \Lambda ,\],\[\left| {\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}}} } \right| \le \Lambda ,\partial \Omega \in {C^2},v(r) \in C[0,\infty ).v(0) = 0,1 \le \frac{{rv(r)}}{{\int_0^r {v(s)ds} }} \le m,{u_0}(x) \in {C^2}(\overline \Omega ),\psi (s,t) \in {C^\beta }(\partial \Omega \times [0,T]),0 < \beta < 1\],\[{u_0}(s) = \psi (s,0).\]$  相似文献   

15.
Suppose that $\[{x_1},{x_2}, \cdots \]$ are i i d. random variables on a probability space $\[(\Omega ,F,P)\]$ and $\[{x_1}\]$ is normally distributed with mean $\[\theta \]$ and variance $\[{\sigma ^2}\]$, both of which are unknown. Given $\[{\theta _0}\]$ and $\[0 < \alpha < 1\]$, we propose a concrete stopping rule T w. r. e.the $\[\{ {x_n},n \ge 1\} \]$ such that $$\[{P_{\theta \sigma }}(T < \infty ) \le \alpha \begin{array}{*{20}{c}} {for}&{\begin{array}{*{20}{c}} {all}&{\theta \le {\theta _0},\sigma > 0,} \end{array}} \end{array}\]$$ $$\[{P_{\theta \sigma }}(T < \infty ) = 1\begin{array}{*{20}{c}} {for}&{\begin{array}{*{20}{c}} {all}&{\theta > {\theta _0},\sigma > 0,} \end{array}} \end{array}\]$$ $$\[\mathop {\lim }\limits_{\theta \downarrow {\theta _0}} {(\theta - {\theta _0})^2}{({\ln _2}\frac{1}{{\theta - {\theta _0}}})^{ - 1}}{E_{\theta \sigma }}T = 2{\sigma ^2}{P_{{\theta _0}\sigma }}(T = \infty )\]$$ where $\[{\ln _2}x = \ln (\ln x)\]$.  相似文献   

16.
17.
Let $A$, $B$ be unital $\[{C^*}\]$-algebras. $\[{\chi _A} = \{ \varphi |\varphi \]$ are all completely postive linear maps from $\[{M_n}(C)\]$ to $A$ with $\[\left\| {a(\varphi )} \right\| \le 1\]$ $}$. $\[(a(\varphi ) = \left( {\begin{array}{*{20}{c}} {\varphi ({e_{11}})}& \cdots &{\varphi ({e_{1n}})}\{}& \cdots &{}\{\varphi ({e_{n1}})}& \cdots &{\varphi ({e_{nn}})} \end{array}} \right),\]$ where $\[\{ {e_{ij}}\} \]$ is the matrix unit of $\[{M_n}(C)\]$. Let $\[\alpha \]$ be the natural action of $\[SU(n)\]$ on $\[{M_n}(C)\]$ For $\[n \ge 3\]$, if $\[\Phi \]$ is an $\[\alpha \]$-invariant affine isomorphism between $\[{\chi _A}\]$ and $\[{\chi _B}\]$, $\[\Phi (0) = 0\]$, then $A$ and $B$ are $\[^*\]$-isomorphic In this paper a counter example is given for the case $\[n = 2\]$.  相似文献   

18.
A measure μ is called Carleson measure,iff the condition of Carleson type μ(Q~*)≤C|Q|~α(a≥1)is satisfied,where C is a constant independent of the cube Q with edge lengthq>0 in R~n and Q~*={(y,t)∈R_+~(+1)|y∈Q,0相似文献   

19.
In this paper, we provide the existence theorem for solutions of general boundary value problem of quasi-linear second order elliptic differential equations in the following form: $\[\sum\limits_{i,j = 1}^n {({a_{ij}}(x,u)\frac{{\partial u}}{{\partial {x_j}}}) + a(x,u,{u_{{x_k}}}),{\rm{ }}in} {\rm{ }}\Omega \]$, $\[\alpha (x,u)\frac{{\partial u}}{{\partial \gamma }} + \beta (x,u) = 0,{\rm{ on }}\partial \Omega \]$, where \alpha(x, u) \geq 0,\alpha_u(x, u) \leq 0 and \gamma is some direction, defining on $\[\partial \Omega \]$.  相似文献   

20.
In this paper,, the author proves the following result: Let $\[{E_{a,k}}(N)\]$ denote the number of natural numbers $\[n \le N\]$ for which equation $$\[\sum\limits_{i = 0}^k {\frac{1}{{{x_i}}}} = \frac{a}{n}\]$$ is insolable in positive integers $\[{x_i}(i = 0,1, \cdots ,k)\]$.Then $$\[{E_{a,k}}(N) \ll N\exp \{ - C{(\log N)^{1 - \frac{1}{{k + 1}}}}\} \]$$ where the implied constant depends on a and K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号