首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the Taguchi method was used to optimize the dark fermentative H2 production from the organic fraction of municipal solid waste (OFMSW). The experiments were planned using the L16 orthogonal array design with each trial conducted at different levels of substrate concentration, inoculum-to-substrate ratio (ISR), and temperature. Based on the results, the optimal setting of the process parameters was the substrate concentration of 6 g-VS/L, ISR 0.5, and temperature of 55 °C. Furthermore, substrate concentration was the most important parameter affecting bio-H2 production among the three process parameters considered. Finally, a confirmation experiment under optimal conditions yielded 62.5 mL H2/g-VSadded, which was higher than all the bio-H2 yield values obtained in the other conditions tested in this study. The measured and predicted bio-H2 yields in the verification test were also very close to each other, confirming the reliability of the Taguchi method in optimizing the bio-H2 production process.  相似文献   

2.
A batch study for biohydrogen production was conducted using raw palm oil mill effluent (POME) and POME sludge as a feed and inoculum respectively. Response Surface Methodology (RSM) was used to design the experiments. Experiments were conducted at different reaction temperatures (30–50 °C), inoculum size to substrate ratios (I:S) and reaction times (8–24 h). An optimum condition of biohydrogen production was achieved with COD removal efficiency of 21.95% with hydrogen yield of 28.47 ml H2 g?1 COD removed. The I:S ratio was 40:60, with reaction temperature of 50 °C at 8 h of reaction time. The study showed that a lower substrate concentration (less than 20 g L?1) for biohydrogen production using pre-settled POME was achievable, with optimum HRT of 8 h under thermophilic condition (50 °C). This study also found that pre-settled POME is feasible to be used as a substrate for biohydrogen production under thermophilic condition.  相似文献   

3.
Key factors (inoculums concentration, substrate concentration and citrate buffer concentration) affecting hydrogen yield (HY) and specific hydrogen production rate (SHPR) from food waste in batch fermentation by anaerobic mixed cultures were optimized using Response Surface Methodology with Central Composite Design. The experiments were conducted in 120 ml serum bottles with a working volume of 70 mL. Under the optimal condition of 2.30 g-VSS/L of inoculums concentration, 2.54 g-VS/L of substrate concentration, and 0.11 M of citrate buffer concentration, the predicted maximum HY and SHPR of 104.79 mL H2/g-VSadded and 16.90 mL H2/g-VSS.h, respectively, were obtained. Concentrations of inoculums, substrate and citrate buffer all had an individual effect on HY and SHPR (P < 0.05). The substrate concentration and citrate buffer concentration had the greatest interactive effect on SHPR (P = 0.0075) while their effects on HY (P = 0.0131) were profound. These results were reproduced in confirmation experiments under optimal conditions and generated an HY of 104.58 mL H2/g-VSadded and an SHPR of 16.86 mL H2/g-VSS.h. This was only 0.20% and 0.24%, respectively, different from the predicted values. Microbial community analysis by PCR-DGGE indicated that Clostridium was the pre-dominant hydrogen producer at the optimum and worst conditions. The presence of Lactobacillus sp. and Enterococcus sp. might be responsible for the low HY and SHPR at the worst condition.  相似文献   

4.
This study investigated the effect of pre-treatment and hydraulic retention time (HRT) on biohydrogen production from organic wastes. Various pre-treatments including thermal, base, acid, ultrasonication, and hydrogen peroxide were applied alone or in combination to enhance biohydrogen production from potato and bean wastewater in batch tests. All the pre-treated samples showed higher hydrogen production than the control tests. Hydrogen peroxide pre-treatment achieved the best results of 939.7 and 470 mL for potato and bean wastewater, respectively. Continuous biohydrogen production from sucrose, potato and bean wastewater was significantly influenced by reducing the HRT as 24, 18 and 12 h. Sucrose and potato showed similar behavior, where the hydrogen production rate (HPR) increased with decreasing the HRT. Optimum hydrogen yield results of 320 mL-H2/g-VS (sucrose) and 150 mL-H2/g-VS (potato) were achieved at HRT of 18 h. Bean wastewater showed optimum HPR of 0.65 L/L.d with hydrogen yield of 80 mL-H2/g-VS at 24 h HRT.  相似文献   

5.
Extreme-thermophilic biohydrogen production from distillery wastewater was investigated in batch and continuous-mode operation. Hydrogen-producing mixed culture was enriched by repeated batch cultivations. Effect of temperature and pH on biohydrogen yield was investigated in batch experiments. The highest hydrogen yield of 196. mL/g-volatile solidsaddded (VSadded) was obtained at 70 °C and pH 7.0 in batch culture. Continuous biohydrogen production was performed in CSTR reactor with yield of 172.0 mL/g-VSadded at HRT (hydraulic retention time) of 4 days. The main metabolic products were acetate, lactate, and ethanol. Community structure of hydrogen-producing microflora was investigated by 16S rRNA gene sequence analysis. The microorganisms involved in both batch and continuous-mode operation were similar and hydrogen production was carried out by a group of extreme-thermophilic bacterial species related to Thermotoga, Coprothermobacter, Caldanaerobacter, Thermobrachium, and Caldicellulosiruptor.  相似文献   

6.
A two-stage process to produce hydrogen and methane from lipid-extracted microalgal biomass residues (LMBRs) was developed. The biogas production and energy efficiency were compared between one- and two-stage processes. The two-stage process generated 46 ± 2.4 mL H2/g-volatile solid (VS), and 393.6 ± 19.5 mL CH4/g-VS. The methane yield was 22% higher than the one in the one-stage process. Energy efficiency increased from 51% in the one-stage process to 65% in the two-stage process. Additionally, it was found that repeated batch cultivation was a useful method to cultivate the cultures to improve the methane production rate and reduce the fermentation time. In the repeated batch cultivation, the methane yield slightly decreased if the ammonia levels rose, suggesting that the accumulation of ammonia could affect methane production.  相似文献   

7.
The pilot-scale of two-stage thermophilic (55 °C) for biohythane production from palm oil mill effluent (POME) was operated at hydraulic retention time (HRT) of 2 days and organic loading rate (OLR) of 27.5 gCOD/L⋅d) for first stage and HRT of 10 days and OLR of 5.5 gCOD/L⋅d for second stage. Biohythane production rate was 1.93 L-gas/L⋅d with biogas containing 11% H2, 37% CO2, and 52% CH4. Recirculation of methane effluent mixed with POME at a ratio of 1:1 can control pH in the first stage at an optimal range of 5.0–6.5. Microbial community in hydrogen stage dominated by Thermoanaerobacterium sp., while methane stage dominated by Methanosarcina sp. The H2/CH4 ratio of biohythane was 0.13–0.18 which suitable for vehicle fuel. Biohythane production from POME could be promising cleaner biofuel with flexible and controllable H2/CH4 ratio.  相似文献   

8.
The current work describes a novel application of steam reforming process to treat palm oil mill effluent (POME), whilst co-generating H2-rich syngas from the treatment itself. The effects of reaction temperature, partial pressure of POME and gas-hourly-space-velocity (GHSV) were determined. High crystallinity 20 wt%Ni/80 wt%Al2O3 catalyst with smooth surface was prepared via impregnation method. Baseline runs revealed that the prepared catalyst was highly effective in destructing organic compounds, with a two-fold enhancement observed in the presence of 20 wt% Ni/80 wt%Al2O3 catalyst, despite its low specific surface area (2.09 m2 g?1). In addition, both the temperature and partial pressure of POME abet the COD reduction. Consequently, the highest COD reduction of 99.7% was achieved, with a final COD level of 73 ± 5 ppm from 27,500 ppm, at GHSV of 40,000 mL/h.gcat and partial pressure of POME equivalent to 95 kPa at 1173 K. In terms of gaseous products, H2 was found to be the major component, with selectivity ranged 51.0%–70.9%, followed by CO2 (17.7%–34.1%), CO (7.7%–18.4%) and some CH4 (0.6%–3.3%). Furthermore, quadratic models with high R2-values were developed.  相似文献   

9.
This study investigated the utilization of Pistia stratiotes for biohydrogen production via a dark-fermentation process. The aquatic plant was subjected to acid-hydrolysis using H2SO4: 3.0% (v/v) for 40 min, resulting in sugar yield: 122.2 ± 5.2 mg/g. The optimum culture pH was 5.5, achieving hydrogen yield (HY): 2.46 ± 0.14 mol-H2/mol-glucose (3.51 ± 0.20 mg-H2/g-dry weight) at fermentation time 8 h, temperature 25 °C, and substrate-to-biomass (S/X) ratio 1.0 g-COD/g-VSS. The organic mass balance (92–96%) and electron-equivalent balance (92–98%) indicated the reliability of fermentation data. The dominant species included Planctomycetales, Verrucomicrobiales, Clostridiaceae, and Gammaproteobacteria. The phylogenetic analysis confirmed the abundance of hydrogen-producing bacteria such as Bacillus, Clostridium, and Enterobacter. The hydrogenase gene expression provided the highest activity at pH: 5.5 with a cell number 2.53 × 104 copies/ng-DNA compared to pH: 4.5 (6.95 × 103 copies/ng-DNA) and pH: 8.5 (7.77 × 103 copies/ng-DNA). The total cost of the fermentation system including the amortization cost of investment and operating cost was 0.08 $/kg-dry weight (22.8 $/kg-H2 produced).  相似文献   

10.
Improvement of biohythane production from oil palm industry solid waste residues by co-digestion with palm oil mill effluent (POME) in two-stage thermophilic fermentation was investigated. A two-stage co-digestion of solid waste with POME has biohythane production of 26.5–34 m3/ton waste. The co-digestion of solid waste with POME increased biohythane production of 67–114% compared to digestion POME alone. Co-digestion of solid waste with POME enhanced hydrolysis constant (kh) from 0.07 to 0.113 to 0.120–0.223 d−1. The hydrolysis constant (kh) of co-digestion was 10 times higher than the single digestion of solid waste. Clostridium sp. was predominated in the hydrogen stage, while Methanosphaera sp. was predominant in methane stage. The co-digestion of solid waste with readily biodegradable organic matter (POME) could significantly increase biohythane production with achieving the significant cost reduction for pretreatment of solid wastes.  相似文献   

11.
Enhancement of biological H2 production efficiency with pre-ozonation process of palm oil mill effluent (POME) prior to thermophilic dark fermentation (55 °C) was investigated. H2 fermentation experiments were conducted using varying concentrations of raw and ozonated POME. Results revealed that H2 can be produced from both raw and ozonated POME under thermophilic fermentation. Maximum H2 production yield of 77 mL.g−1CODremoved was obtained from ozonated POME, which was higher than that of 51 mL·g−1 CODremoved obtained from raw POME at the highest concentration of 35,000 mg COD.L−1. Meanwhile, the specific H2 production rate (R'max) of 1.9 and 1.5 mL·h−1·g−1 TVS were observed in raw and ozonated POME at the concentration of 25,000 mg COD.L−1, respectively. The main metabolic products during POME fermentation were acetic and butyric acids and trace amount of valeric acid. Propionic acid and ethanol have contributed, which could be reduced H2 production in all batch experiments for both POME. The highest efficiency of total and soluble COD removal of 24 and 25% was obtained from the raw POME, and those of 19 and 25% was obtained from the ozonated POME. The present study demonstrates that the POME loading was greatly influenced on the H2 production yields and rates. The comparative results showed that the ozonated POME gave higher H2 yields than the raw POME. Thus, demonstrating that the ozonation process significantly improved the POME biodegradability, which is able to enhance H2 production yields. However, the ozone pre-treatment was not improved in the specific H2 production rates.  相似文献   

12.
Poly (aryl hexafluoro sulfone benzimidazole) and poly (aryl hexafluoro ethoxy benzimidazole), termed as PArF6SO2BI and PArF6OBI, are synthesized and characterized systematically. PArF6SO2BI membranes illustrate good chemical stability in terms of oxidative weight loss due to the electron-withdrawing sulfone functional group. PArF6OPBI membranes exhibit weak chemical stability after immersion in Fenton's solution. Many of the membranes show good conductivities. Higher conductivities of 3.26 × 10?2 S cm?1 at 160 °C with 286.8 wt% acid doped level for 3:1 (2.335 mmol of 4,4′-sulfonyldibenzoic acid and 7.005 mmol of 2, 2-bis(4-carboxyphenyl) hexafluoropropane) ratio of PArF6SO2BI and 7.31 × 10?2 S cm?1 with 356.9 wt% for 3:1 ratio of PArF6OBI are observed. PArF6SO2BI and PArF6OPBI membranes exhibit good conductivity, thermal and mechanical stabilities which are crucial requirements for high temperature fuel cells.  相似文献   

13.
In the present study, hydrogen production from palm oil mill effluent (POME) was investigated with the incorporation of nanoparticles (NPs) comprising of nickel (NiO) and cobalt oxides (CoO). The NPs of NiO and CoO were prepared using hydrothermal method and were further applied to analyse, their effect on hydrogen production. The results demonstrated that, a maxima volumetric hydrogen production rate of 21 ml H2/L-POME/h with the hydrogen yield of 0.563 L H2/g-CODremoved was obtained with 1.5 mg/L concentration of NiO NPs. On the other hand, the addition of CoO NPs produced maximum volumetric hydrogen production rate of 18 ml H2/L-POME/h with a hydrogen yield of 0.487 L H2/g-CODremoved with 1.0 mg/L of CoO NPs. Results showed that addition of optimal concentration of NiO and CoO NPs to the POME enhances the hydrogen yield by 1.51 and 1.67 fold respectively. Besides, this addition of NiO and CoO enhanced the COD removal efficiency by 15 and 10% respectively as compared to an un-additive NPs POME. The toxicity of NPs was also tested using bacterial viability test, which revealed that application of 3.0 mg/L of NiO and CoO NPs to modified Luria-Bertani (LB) medium had 63% and 83% reduction in bacterial cell growth. The results concluded that supplementation of NiO and CoO NPs under an optimal range to the wastewater can improve the hydrogen productivity.  相似文献   

14.
A start-up study was conducted to produce biohydrogen and biomethane from Palm Oil Mill Effluent (POME) using a two-stage up-flow anaerobic sludge fixed-film (UASFF) bioreactor. 100% molasses was used to start the system, and POME was added at 10% increments until it reached 100% after 59 days. During this period of continuous operation, the HRT and temperature were adjusted in order to optimize the condition for biogas production. Hydrogen and methane gas production fluctuated between 53–70% and 90–95%, respectively, in the last four days of operation (days 56–59), with POME percentage being increased from 70% to 100% (30%–0% molasses). Using 100% raw POME led to a total COD removal of 83.70%, average gas production rates of 5.29 L H2 d−1 (57.11% H2) and 9.60 L CH4 d−1 (94.08% CH4), in their respective units. This output is comparable to, if not better than using 100% molasses as substrate. This work concludes that based on the relative consistency of biogas production on days 56–59, the two-stage UASFF bioreactor operating at a final HRT of 4 h and temperature of 43 °C has taken a period of two months for start-up.  相似文献   

15.
A series of up-flow anaerobic sludge blanket (UASB) reactors operated under thermophilic conditions was used to investigate the two-stage anaerobic process for continuous hydrogen and methane production from skim latex serum (SLS). The first reactor for producing hydrogen was operated by feeding 38 g-VS/L-SLS at various hydraulic retention times (HRTs) of 60, 48, 36, and 24 h. The optimum hydrogen production yield of 2.25 ± 0.09 L-H2/L-SLS was achieved at a 36 h HRT. Meanwhile, the effluents containing mainly with acetate was fed to the second UASB reactor for methane production at 9-day HRT and could be converted to methane with the production yield of 6.41 ± 0.52 L-CH4/L-SLS. The efficiency of organic matters removal obtained from this two-stage process was 62%. The present study shows high value fuel gases in a form of hydrogen and methane can be potentially generated by using a continuous two-stage anaerobic process, in which available organic matters is simultaneously degraded.  相似文献   

16.
The cofermentation of sewage sludge and wine vinasse at different mixing ratios to enhance hydrogen production was investigated. Batch experiments were carried out under thermophilic conditions with thermophilic sludge inoculum obtained from an acidogenic anaerobic reactor. The results showed that the addition of wine vinasse enhances the hydrogen production of sewage sludge fermentation. The highest hydrogen yields, 41.16 ± 3.57 and 43.25 ± 1.52 mL H2/g VSadded, were obtained at sludge:vinasse ratios of 50:50 and 25:75, respectively. These yields were 13 and 14 times higher than that obtained in the monofermentation of sludge (3.17 ± 1.28 mL H2/g VSadded). The highest VS removal (37%) was obtained at a mixing ratio of 25:75. Cofermentation had a synergistic effect the hydrogen yield obtained at a sludge:vinasse ratio of 50:50 was 40% higher, comparing to the sum of each waste. Furthermore, kinetic analysis showed that Cone and first-order kinetic models fitted hydrogen production better than the modified Gompertz model.  相似文献   

17.
The production of biohydrogen through dark fermentation of palm oil mill effluent (POME) was evaluated in two-stages of biohydrogen in an anaerobic sequencing batch reactor (ASBR) system using enriched mixed culture for the first time. This study attempts to examine the effect of HRT and its interaction behavior with the solid retention time (SRT), and the sugar consumption. The effluent after discharged from the thermophilic reactor contained 7.61 g/L TC and 22.87 g/L TSS was fed to the secondary mesophilic reactor system. Results indicated that the overall sugar consumption reached 88.62% at the optimum HRT of 12 h with the SRT set to 20 h. The optimum hydrogen yield and HPR in the thermophilic stage were 2.99 mol H2/mol-sugar and 8.54 mmol H2/L·h respectively, while for the mesophilic stage were 1.19 mol H2/mol-sugar and 1.47 mmolH2/L·h respectively. The overall HPR showed an improvement and increase from 8.54 mmol H2/L·h to 10.34 mmol H2/L.h. Microbial community analysis of mixed culture in the two-stage thermophilic (55.0 °C) and mesophilic (37.0 °C) ASBR reactor was dominated by Thermoanaerobacterium sp. based on the PCR-DGGE technique.  相似文献   

18.
The proton exchange membrane (PEM) was synthesized using polyethersulfone (PES), sulfonated poly (ether ether ketone) (SPEEK) and nanoparticles. The metal oxide nanoparticles such as Fe3O4, TiO2 and MoO3 were added individually to the polymer blend (PES and SPEEK). The polymer composite membranes exhibit excellent features regarding water uptake, ion exchange capacity and proton conductivity than the pristine PES membrane. Since the presence of sulfonic acid groups provides by added SPEEK and the unique properties of inorganic nanoparticles (Fe3O4, TiO2 and MoO3) helps to interconnect the ionic domain by the absorption of more water molecules thereby enhance the conductivity value. The proton conductivity of PES, SPEEK, PES/SPEEK/Fe3O4, PES/SPEEK/TiO2 and PES/SPEEK/MoO3 membranes were 0.22 × 10?4 S/cm, 5.18 × 10?4 S/cm, 3.57 × 10?4 S/cm, 4.57 × 10?4 S/cm and 2.67 × 10?4 S/cm respectively. Even though the blending of PES with SPEEK has reduced the conductivity value to a lesser extent, hydrophobic PES has vital role in reducing the solvent uptake, swelling ratio and improves hydrolytic stability. Glass transition temperature (Tg) of the membranes were determined from DSC thermogram and it satisfies the operating condition of fuel cell system which guarantees the thermal stability of the membrane for fuel cell application.  相似文献   

19.
The feasibility of thermophilic biomethane production from acidified palm oil mill effluent (POME) was assessed in a 5 L anaerobic sequencing batch reactor (ASBR). The effects of various hydraulic retention time (HRT) (10-1 d) on methane production performance and the stability of ASBR in treating acidified POME were evaluated herein. It was found that the highest methane productivity of 5.65 L CH4/L/d could be attained at HRT of 2 d. However, the removal of chemical oxygen demand (COD) and volatile fatty acid (VFA) at this HRT is rather low (65-62%) hence making it inefficient to operate at HRT 2 d since most of the contaminants remained in the liquid streams. Thus the most recommended HRT was 3 d with maximum methane productivity of 3.96 L CH4/L/d with corresponding methane yield of 260.3 L CH4/kgCODremoved. The COD removal efficiency at 3 d HRT was 71%, and the VFA consumption was more than 80%. The correlation of total VFA: total alkalinity (TVFA: TA) at HRT of 3 d was found to be 0.1. This recommended HRT of 3 is equally shorter than any previously reported application of POME as a substrate for thermophilic biomethane.  相似文献   

20.
Polyethylene glycol (PEG) gel was used to immobilize hydrogen producing Clostridium LS2 bacteria for hydrogen production in an upflow anaerobic sludge blanket (UASB) reactor. The UASB reactor with a PEG-immobilized cell packing ratio of 10% weight to volume ratio (w/v) was optimal for dark hydrogen production. The performance of the UASB reactor fed with palm oil mill effluent (POME) as a carbon source was examined under various hydraulic retention time (HRT) and POME concentration. The best volumetric hydrogen production rate of 365 mL H2/L/h (or 16.2 mmol/L/h) with a hydrogen yield of 0.38 L H2/g CODadded was obtained at POME concentration of 30 g COD/L and HRT of 16 h. The average hydrogen content of biogas and COD reduction were 68% and 65%, respectively. The primary soluble metabolites were butyric acid and acetic acid with smaller quantities of other volatile fatty acid and alcohols formed during hydrogen fermentation. More importantly, the feasibility of PEG-immobilized cell UASB reactor for the enhancement of the dark-hydrogen production and treatment of wastewater is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号