首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
PURPOSE: To improve the slice profile and image quality of R2* mapping in the iceball during cryoablation with ultrashort echo time (UTE) imaging by compensating for eddy currents induced by the selective gradient when half-pulse radiofrequency (RF) excitation is employed to achieve UTEs. MATERIALS AND METHODS: A method to measure both B0 and linear eddy currents simultaneously is first presented. This is done with a least-square fitting process on calibration data collected on a phantom. Eddy currents during excitation are compensated by redesigning the RF pulse and the selective gradient accordingly, while that resultant from the readout gradient are compensated for during image reconstruction. In vivo data were obtained continuously during the cryoablation experiments to calculate the R2* values in the iceball and to correlate them with the freezing process. RESULTS: Image quality degradation due to eddy currents is significantly reduced with the proposed approaches. R2* maps of iceball throughout the cryoablation experiments were achieved with improved quality. CONCLUSION: The proposed approaches are effective for compensating eddy currents during half-pulse RF excitation as well as readout. TEs as short as 100 microsec were obtained, allowing R2* maps to be obtained from frozen tissues with improved quality.  相似文献   

2.
In vivo proton spectroscopy in presence of eddy currents   总被引:11,自引:0,他引:11  
Spatially localized methods in spectroscopy often operate with magnetic field gradients for volume selection. The eddy currents induced by these gradients produce time-dependent shifts of the resonance frequency in the selected volume, which results in a distortion of the spectrum after Fourier transformation. In whole-body systems the complete compensation of eddy currents is a difficult procedure. To avoid this, a correction method is proposed for proton spectroscopy, which uses the signal of prominent water protons as a reference for the water-suppressed signal. The correction is performed in the time domain, dividing the water-suppressed signal by the phase factor of the water signal for each data point. The corrected spectra have a good resolution as shown by phantom measurements and brain and muscle spectra of volunteers.  相似文献   

3.
The quality of volume-localized magnetic resonance spectroscopy is affected by eddy currents caused by gradient switching. Eddy currents can be reduced with improved gradient systems; however, it has been suggested that the distortion due to eddy currents can be compensated for during postprocessing with a single-frequency reference signal. The authors propose modifying current techniques for acquiring the single-frequency reference signal by using relaxation weighting to reduce interference from components that cannot be eliminated by digital filtering alone. Additional sequences with T1 or T2 weighting for reference signal acquisition are shown to have the same eddy current characteristics as the original signal without relaxation weighting. The authors also studied a new eddy current correction method that does not require a single-frequency reference signal. This method uses two free induction decays (FIDs) collected from the same volume with two sequences with opposite gradients. Phase errors caused by eddy currents are opposite in these two FIDs and can be canceled completely by combining the FIDs. These methods were tested in a phantom. Eddy current distortions were corrected, allowing quantitative measurement of structures such as the –CH?CH– component, which is otherwise undetectable.  相似文献   

4.
Cryosurgery has been shown to be an effective therapy for prostate cancer. Temperature monitoring throughout the cryosurgical iceball could dramatically improve efficacy, since end temperatures of at least -40 degrees C are required. The results of this study indicate that MR thermometry based on tissue R(*)(2) has the potential to provide this information. Frozen tissue appears as a complete signal void on conventional MRI. Ultrashort echo times (TEs), achievable with half pulse excitation and a short spiral readout, allow frozen tissue to be imaged and MR characteristics to be measured. However, half pulse excitation is highly sensitive to eddy current distortions of the slice-select gradient. In this work, the effects of eddy currents on the half pulse technique are characterized and methods to overcome these effects are developed. The methods include: 1) eddy current compensated slice-select gradients, and 2) a correction for the phase shift between the first and second half excitations at the center of the slice. The effectiveness of these methods is demonstrated in R(*)(2) maps calculated within the frozen region during cryoablation.  相似文献   

5.
A new single-voxel proton NMR spectrally-selective refocusing method for measuring glutamate (Glu) and glutamine (Gln) in the human brain in vivo at 3T is reported. Triple-resonance selective 180 degrees RF pulses with a bandwidth of 12 Hz were implemented within point-resolved spectroscopy (PRESS) for selective detection of Glu or Gln, and simultaneous acquisition of creatine singlets for use as a reference in phase correction. The carriers of the spectrally-selective 180 degrees pulses and the echo times (TEs) were optimized with both numerical and experimental analyses of the filtering performance, which enabled measurements of the target metabolites with negligible contamination from N-acetylaspartate and glutathione. The concentrations of Glu and Gln in the prefrontal cortex were estimated to be 9.7+/-0.5 and 3.0+/-0.7 mM (mean+/-SD, N=7), with reference to Cr at 8 mM.  相似文献   

6.
The proton NMR transverse relaxation time T(2) of glutamate (Glu) in human brain was measured by means of spectrally selective refocusing at 3.0 T in vivo. An 81.4-ms-long dual-band Gaussian 180 degrees RF pulse, designed for refocusing at 2.35 and 3.03 ppm, was employed within point-resolved spectroscopy (PRESS) to generate the Glu C4-proton target multiplet and the total creatine (tCr) singlet. Six optimal echo times (TEs) between 128 and 380 ms were selected from numerical analysis of the filtering performance for effective detection of the Glu signal with minimal contamination from glutamine (Gln), N-acetylaspartate (NAA), and glutathione (GSH). The magnetization of Glu and tCr was extracted from spectral fitting of experimental and calculated spectra. Apparent T(2) values of Glu and tCr were estimated as 201 +/- 18 and 164 +/- 12 ms for the medial prefrontal (PF) cortex, and 198 +/- 22 and 169 +/- 15 ms (mean +/- SD, N = 5) for the left frontal (LF) cortex, respectively. With water segmentation data, the magnetization values of Glu and tCr of the two adjacent voxels, calculated from the T(2) values and spectra following the thermal equilibrium magnetization, were combined to give the Glu and tCr concentrations as 10.37 +/- 1.06 and 8.87 +/- 0.56 mM for gray matter (GM), and 5.06 +/- 0.57 and 5.16 +/- 0.45 mM (mean +/- SD, N = 5) for white matter (WM), respectively.  相似文献   

7.
Non‐Cartesian imaging sequences and navigational methods can be more sensitive to scanner imperfections that have little impact on conventional clinical sequences, an issue which has repeatedly complicated the commercialization of these techniques by frustrating transitions to multicenter evaluations. One such imperfection is phase errors caused by resonant frequency shifts from eddy currents induced in the cryostat by time‐varying gradients, a phenomenon known as B0 eddy currents. These phase errors can have a substantial impact on sequences that use ramp sampling, bipolar gradients, and readouts at varying azimuthal angles. We present a method for measuring and correcting phase errors from B0 eddy currents and examine the results on two different scanner models. This technique yields significant improvements in image quality for high‐resolution joint imaging on certain scanners. This result suggests that correcting short‐time B0 eddy currents that do not affect conventional clinical sequences may simplify the adoption of non‐Cartesian methods. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The switching of magnetic field gradients in MRI gives rise to eddy currents in the structural components of superconducting magnet systems. The associated magnetic fields cause intensity artifacts which are particularly severe in some animal-size systems. We treat theoretically three mechanisms which cause intensity artifacts in one-dimensional projection images obtained by a spin-echo technique. The first is an off-resonance effect, caused by applying the refocusing pulse before the read compensation gradient pulse has decayed sufficiently. The other two mechanisms are caused by a spatial dependence of the phase accumulated by the spins at the time of formation of the echo, as a result of the eddy current fields. First, interference causes a loss of transverse magnetization because of a variation in the phase of spins which lie on the same isochromat during the read gradient pulse. Second, a variation of the phase of the spins in a direction orthogonal to the isochromats causes spins throughout the sample to refocus at different times. These two mechanisms are fundamentally different, since interference can occur even if the main magnetic field is homogeneous, whereas improper refocusing does not. It is shown that there is no loss of intensity by the interference mechanism if phase encoding is used to form two-dimensional images. This may well be a major reason why images obtained by 2DFT have been found to be generally superior to those obtained by projection reconstruction. Experimentally, the distribution of intensity in one-dimensional projection images of a square slice phantom is compared with theoretical intensities, estimated using eddy current field reported in the preceding paper.  相似文献   

9.
正常人脑不同区域^1H磁共振波谱研究   总被引:9,自引:0,他引:9  
目的:应用1H磁共振波谱技术研究正常人脑内化合物的含量和分布。材料和方法:应用1.5T磁共振仪对18例正常人脑进行1H波谱测试,测量的感兴趣区包括大脑皮层、白质、丘脑和小脑,所用序列为激励回波探测序列(stimulatedechoaquisitionmode,STEAM)。结果:1H磁共振波谱可以检测出脑内许多化合物,如N-乙酰门冬氨酸(NAA)、含胆碱类化合物(Cho)、肌酸和磷酸肌酸(Cr+Pcr)、谷氨酸和谷氨酰胺(Glu+Gln)、脂质、乳酸等。各化合物的浓度在脑的不同区域存在着差异。NAA/Cho比值在灰质最高,小脑最低。Cr/Cho比值在小脑最高、白质最低。设定肌酸的浓度在灰质和小脑为10mmol/L,在白质和丘脑为11mmol/L,计算NAA的绝对浓度为13~23mmol/L,并且灰质的含量高于小脑和丘脑。结论:1H磁共振波谱技术可无创性检测出脑组织中与能量代谢、氨基酸、脂肪酸及神经递质有关的化合物,并可定量测定,有助于研究生理和疾病时脑生化改变。  相似文献   

10.
Accurate phasing of MRS spectra is often difficult unless time varying phase effects produced by gradient-induced eddy currents that persist during data acquisition are eliminated. This effect is particularly problematic in 1H-CSI spectra where frequency shifts produced by static field inhomogeneity and phase shifts produced by eddy currents combine. In this paper we present a method that corrects both shifts and eliminates manual phasing of individual CSI spectra typically required to recover a pure absorption line shape. The method uses a time domain phase correction derived from the ambient water signal acquired under identical conditions (i.e., acquisition parameters, gradient sequence) as the solvent-sup pressed CSI data. Results from CSI experiments on phantoms and in vivo solvent suppressed 1H-CSI spectra from normal human brain are presented demonstrating the capabilities of the technique.  相似文献   

11.
PURPOSE: To determine relaxation times of metabolite signals in proton magnetic resonance (MR) spectra of immature brain, which allow a correction of relaxation that is necessary for a quantitative evaluation of spectra acquired with long TE. Proton MR spectra acquired with long TE allow a better definition of metabolites as N-acetyl aspartate (NAA) and lactate especially in children. MATERIALS AND METHODS: Relaxation times were determined in the basal ganglia of 84 prematurely born infants at a postconceptional age of 37.8 +/- 2.2 (mean +/- SD) weeks. Metabolite resonances were investigated using the double-spin-echo volume selection method (PRESS) at 1.5 T. T1 was determined from intensity ratios of signals obtained with TRs of 1884 and 6000 msec, measured at 3 TEs (25 msec, 136 msec, 272 msec). T2 was determined from signal intensity ratios obtained with TEs of 136 msec and 272 msec, measured at 2 TR. Taking only long TEs reduced baseline distortions by macromolecules and lipids. For myo-inositol (MI), an apparent T2 for short TE was determined from the ratio of signals obtained with TE = 25 msec and 136 msec. Intensities were determined by fitting a Lorentzian to the resonance, and by integration. RESULTS: Relaxation times were as follows: trimethylamine-containing compounds (Cho): T1 = 1217 msec/T2 = 273 msec; total creatine (Cr) at 3.9 ppm: 1010 msec/111 msec; Cr at 3.0 ppm: 1388 msec/224 msec; NAA: 1171 msec/499 msec; Lac: 1820 msec/1022 msec; MI: 1336 msec/173 msec; apparent T2 at short TE: 68 msec. CONCLUSION: T1 and T2 in the basal ganglia of premature infants do not differ much from previously published data from basal ganglia of older children and adults. T2 of Cho was lower than previous values. T2 of Cr at 3.9 ppm and Lac have been measured under different conditions before, and present values differ from these data.  相似文献   

12.
The temporal and spatial dependence of the eddy current fields, generated by switching off x, y, and z gradients in a 40-cm bore Bruker superconducting magnet, have been studied by measuring the offset frequency of the proton FID obtained from a small spherical sample. The measurements were made with the pre-emphasis unit deactivated. The data obtained at each location were well fitted to a sum of four exponentially decaying components. The shortest decay is, in each case, associated with the decay of the current in the gradient coil itself, while the other decays are associated with three eddy currents with decay times ranging from 13 to 480 ms. Each of the three eddy currents generates an essentially uniform gradient for at least 4 cm on either side of the isocenter. However, when the eddy currents are generated by either the vertical transverse gradient or the longitudinal gradient, the eddy current gradients are also accompanied by a field shift.  相似文献   

13.
We propose methods for the spatial and temporal characterization of time-dependent magnetic fields generated by eddy currents after switching gradients. For an on-line determination of the temporal variations of the fields, we extract two terms from the unresolved signal of an extended sample, describing the time evolution of a frequency shift gamma delta Bz(t) and of a decay constant k(t). This procedure allows us to optimize interactively the multiexponential pre-emphasis as well as any spectral volume selection method with respect to eddy currents. Additionally, we suggest an imaging sequence which allows us to determine the spatial distribution of eddy current fields at a chosen time-point after any gradient sequence to be tested. Expansion of these eddy currents fields into spherical harmonic functions proves the existence of a higher order terms, which cannot be corrected by a standard pre-emphasis device, where time constants and amplitudes are adjusted on the X, Y, Z, and Z0 coils. The proposed numerical analysis gives a tool to characterize any magnet/gradient system quantitatively with respect to eddy current performance.  相似文献   

14.
The C4 multiplet proton resonances of glutamate (Glu) around 2.35 ppm and glutamine (Gln) around 2.45 ppm usually overlap in MR spectra, particularly at low- and mid-field strengths (1.5-4.7T). A spectral simplification approach is introduced that provides unobstructed Glu and Gln measurement using a standard STEAM localization sequence with optimized interpulse timings. The underlying idea is to exploit the dependence of response of a coupled spin system on the echo time (TE) and mixing time (TM) to find an optimum timing set (TE, TM), at which the outer-wings of C4 "pseudo-triplet" proton resonances of Glu and Gln are significantly suppressed while the central peaks are maintained. The spectral overlap is thus resolved as the overlap exists exclusively at the outer-wings and the central peaks are readily separated due to the approximate 0.1-ppm difference in chemical shift. Density matrix simulation for Glu, Gln, and other overlapping metabolites at 2.3-2.5 ppm was conducted to predict the optimum timing sets. The simulated, phantom, and in vivo results demonstrated that the C4 multiplet proton resonances of Glu and Gln can be resolved for unobstructed detection at 3T, 4T, and 4.7T. For simplicity, only simulated data are illustrated at 7T and 9.4T.  相似文献   

15.
Accurate, noninvasive measurements of liver fat content are needed for the early diagnosis and quantitative staging of nonalcoholic fatty liver disease. Chemical shift‐based fat quantification methods acquire images at multiple echo times using a multiecho spoiled gradient echo sequence, and provide fat fraction measurements through postprocessing. However, phase errors, such as those caused by eddy currents, can adversely affect fat quantification. These phase errors are typically most significant at the first echo of the echo train, and introduce bias in complex‐based fat quantification techniques. These errors can be overcome using a magnitude‐based technique (where the phase of all echoes is discarded), but at the cost of significantly degraded signal‐to‐noise ratio, particularly for certain choices of echo time combinations. In this work, we develop a reconstruction method that overcomes these phase errors without the signal‐to‐noise ratio penalty incurred by magnitude fitting. This method discards the phase of the first echo (which is often corrupted) while maintaining the phase of the remaining echoes (where phase is unaltered). We test the proposed method on 104 patient liver datasets (from 52 patients, each scanned twice), where the fat fraction measurements are compared to coregistered spectroscopy measurements. We demonstrate that mixed fitting is able to provide accurate fat fraction measurements with high signal‐to‐noise ratio and low bias over a wide choice of echo combinations. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

16.
The switching of magnetic field gradient coils in magnetic resonance imaging (MRI) inevitably induces transient eddy currents in conducting system components, such as the cryostat vessel. These secondary currents degrade the spatial and temporal performance of the gradient coils, and compensation methods are commonly employed to correct for these distortions. This theoretical study shows that by incorporating the eddy currents into the coil optimization process, it is possible to modify a gradient coil design so that the fields created by the coil and the eddy currents combine together to generate a spatially homogeneous gradient that follows the input pulse. Shielded and unshielded longitudinal gradient coils are used to exemplify this novel approach. To assist in the evaluation of transient eddy currents induced within a realistic cryostat vessel, a low-frequency finite-difference time-domain (FDTD) method using the total-field scattered-field (TFSF) scheme was performed. The simulations demonstrate the effectiveness of the proposed method for optimizing longitudinal gradient fields while taking into account the spatial and temporal behavior of the eddy currents.  相似文献   

17.
Large and spatially‐linear phase errors along the frequency‐encode direction may be induced by several common and hard‐to‐avoid system imperfections such as eddy currents. For data acquired in dual‐echo Dixon techniques, the linear phase error can be more aggravated when compared to that acquired in a single echo and can pose challenges to a phase‐correction algorithm necessary for successful Dixon processing. In this work, we propose a two‐step process that first corrects the linear component of the phase errors with a modified Ahn‐Cho algorithm (Ahn CB and Cho ZH, IEEE Trans. Med. Imaging 6:32, 1987) and then corrects the residual phase errors with a previously‐developed region‐growing algorithm (Ma J, Magn. Res. Med. 52:415, 2004). We demonstrate that successive application of the two‐step process to data from a dual‐echo Dixon technique provides a “1‐2 punch” to the overall phase errors and can overcome local water and fat separation failures that are observed when the region‐growing–based algorithm is applied alone. Magn Reson Med 60:1250–1255, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
Analysis of eddy currents in nuclear magnetic resonance imaging   总被引:4,自引:0,他引:4  
The eddy currents in nuclear magnetic resonance (NMR) imaging are analyzed from the solutions of Maxwell's equations and their effects are examined over various experimental conditions from whole-body diagnostic imaging to recently developed NMR microscopy. The analysis is focused mainly on the frequency characteristics and intensity variations of the eddy-current-induced field which depends on the overall system size, ratio of the gradient coil size to the magnet bore diameter, and the pulse-sequence-dependent parameters such as input current waveform and repetition time. From the analysis, the frequency response of the eddy-current-induced field is that of a high-pass filter whose cutoff frequency is inversely proportional to the square of the overall system size. The intensity ratio of the generated field to the induced field is not affected by the overall system size, but is sensitively related to the ratio of the gradient coil size to the magnet bore diameter.  相似文献   

19.
Quantitative MRI techniques as well as methods such as blood oxygen level-dependent (BOLD) imaging and in vivo spectroscopy require stringent optimization of magnetic field homogeneity, particularly when using high main magnetic fields. Automated shimming approaches require a method of measuring the main magnetic field, B(0), followed by adjusting the currents in resistive shim coils to maximize homogeneity. A robust automated shimming technique using arbitrary mapping acquisition parameters (RASTAMAP) using a 3D multiecho gradient echo sequence that measures B(0) with high precision was developed. Inherent compensation and postprocessing methods enable removal of artifacts due to hardware timing errors, gradient propagation delays, gradient amplifier asymmetry, and eddy currents. This allows field maps to be generated for any field of view, bandwidth, resolution, or acquisition orientation without custom tuning of sequence parameters. Field maps of an aqueous phantom show +/- 1 Hz variation with altered acquisition orientations and bandwidths. Subsequent fitting of measured shim coil field maps allows calculation of shim currents to produce optimum field homogeneity.  相似文献   

20.
Using localized proton spectroscopy, the author and associates previously have observed an increase in the resonance at 1.2 +/- 0.2 ppm in the brain of monkeys with experimental allergic encephalomyelitis (EAE). In proton nuclear magnetic resonance (NMR) spectroscopy, the lactate methyl protons resonate at dose to the same chemical shift frequency as the lipid methylene protons (1.2 +/- 0.2 ppm). Noninvasive zero quantum NMR techniques were used to separate lipids from lactate in the brain during the course of EAE development. Out of 53 zero quantum NMR measurements (from three animals), 16 measurements were made at a time when a resonance at 1.2 ppm appeared (after the animals developed EAE). In all these cases, lactate was not detectable. The fact that the resonance (identified as lipids with zero quantum techniques) correlated with histochemical Oil red O staining suggests that these mobile NMR signals are associated with demyelination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号