首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Complex protein antigens contain multiple potential T cell recognition epitopes, which are generated through a processing pathway involving partial antigen degradation via proteases, binding to MHC molecules, and display on the APC surface, followed by recognition via the T cell receptor. We have investigated recognition of the GAD65 protein, one of the well-characterized autoantigens in type I diabetes, among individuals carrying the HLA-DR4 haplotypes characteristic of susceptibility to IDDM. Using sets of 20-mer peptides spanning the GAD65 molecule, multiple immunostimulatory epitopes were identified, with diverse class II DR molecules functioning as the restriction element. The majority of T cell responses were restricted by DRB1 molecules; however, DRB4 restricted responses were also observed. Antigen-specific T cell clones and lines were derived from peripheral blood samples of pre-diabetic and IDDM patients and T cell recognition and response were measured. Highly variable proliferative and cytokine release profiles were observed, even among T cells specific for a single GAD65 epitope.  相似文献   

2.
《Autoimmunity》2013,46(4):231-240
Complex protein antigens contain multiple potential T cell recognition epitopes, which are generated through a processing pathway involving partial antigen degradation via proteases, binding to MHC molecules, and display on the APC surface, followed by recognition via the T cell receptor. We have investigated recognition of the GAD65 protein, one of the well-characterized autoantigens in type I diabetes, among individuals carrying the HLA-DR4 haplo-types characteristic of susceptibility to IDDM. Using sets of 20-mer peptides spanning the GAD65 molecule, multiple immunostimulatory epitopes were identified, with diverse class II DR molecules functioning as the restriction element. The majority of T cell responses were restricted by DRB1 molecules; however, DRB4 restricted responses were also observed. Antigen-specific T cell clones and lines were derived from peripheral blood samples of pre-diabetic and IDDM patients and T cell recognition and response were measured. Highly variable proliferative and cytokine release profiles were observed, even among T cells specific for a single GAD65 epitope.  相似文献   

3.
Type 1A diabetes mellitus is caused by specific and progressive autoimmune destruction of the beta cells in the islets of Langerhans whereas the other cell types in the islet (alpha, delta, and PP) are spared. The autoantigens of Type 1A diabetes may be divided into subgroups based on their tissue distributions: Beta-cell-specific antigens like insulin, insulin derivatives, and IGRP (Islet-specific Glucose-6-phosphatase catalytic subunit Related Peptide); neurendocrine antigens such as carboxypeptidase H, insulinoma-associated antigen (IA-2), glutamic acid decarboxylase (GAD65), and carboxypeptidase E; and those expressed ubiquitously like heat shock protein 60 (a putative autoantigen for type 1 diabetes). This review will focus specifically on insulin as a primary autoantigen, an essential target for disease, in type 1A diabetes mellitus. In particular, immunization with insulin peptide B:9-23 can be used to induce insulin autoantibodies and diabetes in animal models or used to prevent diabetes. Genetic manipulation of the insulin 1 and 2 genes reciprocally alters development of diabetes in the NOD mouse, and insulin gene polymorphisms are important determinants of childhood diabetes. We are pursuing the hypothesis that insulin is a primary autoantigen for type 1 diabetes, and thus the pathogenesis of the disease relates to specific recognition of one or more peptides.  相似文献   

4.
Immunomodulation with human recombinant autoantigens   总被引:2,自引:0,他引:2  
The loss of beta cells in type 1 diabetes is the consequence of a T cell-dependent autoimmune attack. Autoantibodies against GAD65 (Mr 65.000 isoform of glutamic acid decarboxylase), IA-2 (insulinoma-associated protein IA-2) or insulin, alone or in combination, predict disease. Preclinical studies in spontaneously diabetic rodents suggest that immunomodulation with autoantigens might alter the course of autoimmune diabetes. Oral insulin reduces the development of diabetes in risk subjects with high insulin autoantibody levels. Giving alum-formulated GAD65 to patients classified with latent autoimmune diabetes of the adult (LADA) is safe and suggests possible immunomodulating effects of GAD65. Future immunomodulation trials might better ascertain subjects based on HLA genetic risk factors, the level of insulin that is still produced or by combining autoantigens with, for example, anti-CD3 antibodies, to induce antigen-specific tolerance and thereby a long-lasting protection for beta cells.  相似文献   

5.
Autoimmune (type 1) diabetes mellitus results from a progressive destruction of insulin secreting beta cells operated by T lymphocytes in pancreatic islets. Circulating autoreactive T cells to specific beta cell antigens are detected in patients with type 1 diabetes. To date, several beta cell autoantigens have been identified in this disease (GAD, IA-2, 38kD secretory protein, insulin, ICA69 etc.), however, it is possible that also other unidentified self molecules contribute to trigger beta cell autoimmunity. In this study we used the human insulinoma cell line CM as source of beta cell antigens to detect reactive T lymphocytes in patients with type 1 diabetes mellitus. This cell line has been previously shown to express a number of recognized beta cell antigens. Since the expression of several beta cell antigens is affected by glucose stimulation we tested two preparations of CM cells cultured under different conditions containing low (0.8 mM) and high glucose concentration (11 mM). T cell proliferation was measured using cells from 32 patients with type 1 diabetes (19 of recent onset and 13 at 3 to 22 months from diagnosis) and 27 age-matched control subjects. A significant increase in T cell proliferation to CM cells grown in high glucose conditions (11 mM) (p < 0.05) was found in type 1 diabetic patients compared to controls. No significant differences were observed when using CM cells cultured at the low glucose concentration. Furthermore, the response to both extracts of CM cells was independent of disease duration (p = 0.6 for both CM cells cultured at 0.8 and 11 mM glucose). These data indicate that T cell reactivity to homogenates of CM cells is detectable in patients with type 1 diabetes and suggest that this human insulinoma cell line is an interesting potential source of beta cell material for immunological studies of autoimmune diabetes.  相似文献   

6.
Glutamic acid decarboxylase (GAD65) has been implicated as a targeted self antigen in the immune destruction of pancreatic beta cells. T cell responses to GAD65 peptides have been detected in both patients with type I diabetes and in the non-obese diabetic (NOD) mouse. To establish which GAD65 epitopes are important in the immunopathogenesis of disease we initially compared T cell responses to GAD65 epitopes in conditions of disease susceptibility and protection. T cell responses to GAD65 peptides were measured in monozygotic twin pairs selected on the basis of disease discordance and T cell recognition of immunogenic regions of GAD65. Peptides of interest were then used to immunize susceptible NOD mice and H2-E transgenic NOD mice which are protected from diabetes. A differential response to the epitope GAD65 521-535 discriminated diabetic from non-diabetic human twins as well as susceptible from protected mice. This epitope as well as GAD 505-519 induces T cell responses despite binding the type I diabetes associated HLA- DQA1*0301/DQB1*0302 product with low affinity. Since DQ-restricted T cell responses are difficult to study in humans, HLA-DQ8 transgenic mice were then used: GAD epitopes 521-535 and 505-519 induced responses in DQ8 transgenic mice and T cell lines were established. Long-term T cell lines against GAD 505-519 were HLA-DQ restricted, and responded to peptide with a strong IFN-gamma and IL-10 response. The findings implicate GAD 521-535 as a possible target peptide in pathogenesis and are compatible with a model whereby self-reactive T cells specific for low-affinity peptide-MHC complexes may escape thymic negative selection.   相似文献   

7.
Type 1 diabetes mellitus is a T-cell mediated autoimmune disease in which the insulin-producing pancreatic beta cells are selectively destroyed. Molecular mimicry and T-cell crossreactivity to beta-cell autoantigens and environmental agents with sequence similarities have been a proposed mechanism underlying the pathogenesis of type 1 diabetes, but actual crossreactivity has not yet been demonstrated. We isolated and investigated T cells reactive to GAD65 peptides and homologous peptides of the Coxsackie virus protein P2C and proinsulin from recent onset type 1 diabetes patients, and tested their fine specificity and cytokine production profile. Six T-cell lines specific for GAD65 peptides (amino acids 491-530) with homology to proinsulin (B20-C14) were isolated from six newly diagnosed patients with type 1 diabetes, but none of the stable T-cell lines crossreacted to the homologous proinsulin peptides. Similarly, none of four T-cell lines reactive to GAD65 peptides (amino acids 247-280) with sequence homology to Coxsackie P2C (amino acids 30-50) crossreacted to the homologous viral peptide. Two T-cell lines corecognized a GAD65 peptide and a Coxsackie P2C peptide. However, the antigen-specific T-cell clones from these T-cell lines were reacting either with the GAD65 peptide or the Coxsackie P2C peptide using different restriction elements without crossreacting to the homologous peptide. Our data demonstrate that homologous peptides previously proposed to serve as targets for crossreactivity indeed are immunogenic. Yet, T-cell clones did not crossreact with linear sequence homologies, despite strong T-cell responses to individual peptides.  相似文献   

8.
Type 1 diabetes is a T cell-mediated autoimmune disease where a number of islet beta-cell target autoantigens have been characterized on the basis of reactivity with autoantibodies. Nevertheless, there remains uncertainty of the nature of another group of autoantigens associated with the secretory granule fraction of islet beta-cells that appear to be targeted predominantly by autoreactive T cells. We have previously characterized CD4+, HLA-DR-restricted T cell lines from new onset type 1 diabetic patients that are specific for the secretory granule fraction of rat tumour insulinoma, RIN. The T cell line from the first patient, HS, proliferates in response to crude microsomal membranes prepared from a recently established, pure human islet beta-cell line NES2Y. In addition, the HS line also responds to secretory granule fractions prepared from a murine tumour insulinoma grown in RIP-Tag mice, showing the recognition of species-conserved antigen(s) in beta-cells. Using partially matched antigen-presenting cells, the HS T cells and another line derived from a second patient, MR, were shown to be restricted by disease-associated DRB1*0101 and DRB1*0404 alleles, respectively. Neither the HS or MR T cell lines proliferate in response to a large panel of candidate islet cell antigens, including insulin, proinsulin, glutamic acid decarboxylase, the protein tyrosine phosphatase IA-2/phogrin, imogen-38, ICA69 or hsp60. Our data provide compelling evidence of the presence of a group of antigens associated with the secretory granule fraction of islet beta-cells recognized by the T cell lines, whose definition may contribute to our knowledge of disease induction as well as to diagnosis.  相似文献   

9.
The non-obese diabetic (NOD) mouse develops insulin dependent diabetes mellitus (IDDM) spontaneously with a higher incidence in females than in males. There are many similarities to the human disease, making it an ideal model. Our group is examining the role that CD4(+) and CD8(+) T cells play in IDDM in the NOD mouse, as it is known that both T cell subsets are required for onset of disease. Although IDDM has an autoimmune etiology, the initial triggering event is unknown and the autoantigen involved has not been identified. This investigation focussed on one of the potential autoantigens involved, the enzyme glutamic acid decarboxylase (GAD). We raised GAD peptide-specific CD8(+) T cells by immunising NOD mice with the GAD peptide alongside an irrelevant peptide that induced a CD4(+) T cell response. In order to maintain these peptide specific T cells in vitro and generate clones, it was found that antibodies specific to CD4(+) and MHC class II molecules needed to be included in the culture medium. This paper outlines the methods we employed to generate and maintain these CD8(+) T cells in vitro.  相似文献   

10.
Type 1 diabetes is thought to result from a T cell-mediated destruction of the pancreatic beta-cells. Multiple and sometimes conflicting studies have identified a variety of aberrations in the cellular immune response to autoantigens in persons with the disease. Potential explanations for these discrepancies include incomparable techniques or culture conditions, diversity in the populations of patients or controls tested, and differences in autoantigen preparations. A T cell workshop was organized by the Immunology of Diabetes Society with the aim of appreciating and identifying problems associated with autoreactive T cell assays in type 1 diabetes. As a first phase, a series of candidate autoantigens were analysed by reference laboratories for quality. Subsequently, these preparations, as well as control stimuli, were distributed in a blind fashion to 26 laboratories worldwide, including all experienced centres, for analysis of T cell proliferation assays in 10 recent onset type 1 diabetes and 10 non-diabetic controls. For this analysis, participants used their own assays and references. The islet autoantigen quality control analyses performed prior to the distribution indicate that the quality of recombinant autoantigen preparations requires improvement. For example, several T cell clones specific for glutamic acid decarboxylase (GAD65) were unable to cross-react with GAD65 expressed in baculovirus, yeast or bacteria. Moreover, autoantigens expressed in E. coli interfered with autoantigen-specific proliferation of both T cell clones and peripheral blood mononuclear cells. Nonetheless, responses could be measured to all autoantigen preparations evaluated in the workshop. During the blind phase of the study, all centres were able to reproducibly measure T cell responses to two identical samples of tetanus toxoid, but there was significant interlaboratory variation in sensitivity and extent of the proliferative response measured. Third, the results using candidate autoantigens indicated that although a few laboratories could distinguish type 1 diabetes patients from non-diabetic controls in proliferative responses to individual islet autoantigens, in general, no differences in T cell proliferation between the two groups could be identified. This first T cell workshop on T cell autoreactivity in type 1 diabetes confirms that this was a difficult area for interlaboratory investigations, but provided insight towards future efforts focused on standardizing autoreactive T cell measurements. Some previously reported conflicting results can in part be explained by the observed interlaboratory variability. The inability to discriminate normal controls from new onset type 1 diabetes patients suggests that measuring proliferative responses in PBMC represents an incomplete picture of the immune response, perhaps complicated by difficulties in identifying suitable antigens and assays for standardized use.  相似文献   

11.
Autoimmune diseases result from the activation of self-reactive T cells induced by autoantigens or by foreign antigens cross-reactive with an autoantigen. A striking characteristic of autoimmune diseases is the increased frequency of certain HLA alleles in affected individuals. Moreover, as demonstrated for example in rheumatoid arthritis and insulin-dependent diabetes mellitus, class II alleles positively associated with autoimmune diseases share amino acid residues in the hypervariable HLA regions involved in peptide binding. Therefore, it is likely that disease-associated HLA class II molecules have the capacity to bind the autoantigen and present it to T cells, thereby inducing and maintaining, under appropriate conditions, the autoimmune disease. The data reviewed here demonstrate MHC-selective inhibition of antigen-induced T cell responses in vivo by parenterally administered soluble, MHC-binding peptide competitors, under conditions in which the competitor is not immunogenic. This suggests the feasibility of a therapeutic approach based on MHC blockade in the treatment of HLA-linked autoimmune diseases.  相似文献   

12.
Glutamic acid decarboxylase (GAD) 65 is a major autoantigen in type 1 diabetes. Regions of homology exist between GAD65 (residues 250-273) and the Coxsackie P2-C protein (residues 28-50) and between GAD65 (residues 506-518) and proinsulin (residues 24-36), and each of these has been reported to be a diabetes-associated T cell target. The aim of this study was to determine whether the homologous regions are shared targets of T lymphocyte reactivity in individual patients with type 1 diabetes. T cell proliferation against the corresponding peptide pairs, GAD254-276 and Coxsackie P2-C32-54 and GAD506-518 and proinsulin24-36, were measured in peripheral blood mononuclear cells from 26 patients with newly diagnosed type 1 diabetes and 24 control subjects. Responses with stimulation indices higher than 3 were found against each of the antigens tested in both patients and control subjects, and no differences were observed between groups. A strong positive correlation was found between responses to the corresponding peptide pairs GAD254-276 and Coxsackie P2-C32-54 (r=0.77, P<0.0001), and between responses to the corresponding peptide pairs GAD506-518 and proinsulin24-36 (r=0.66, P<0.0001). However, a similar correlation was also observed between responses to the noncorresponding pairs Coxsackie P2-C32-54 and proinsulin24-36 (r=0.82, P<0.0001), Coxsackie P2-C32-54 and GAD506-518 (r=0.82, P<0.0001), and GAD254-276 and proinsulin24-36 (r=0.83, P<0.0001). Strikingly, increased responses to peptides were found almost exclusively in subjects with high stimulation indices against the recall antigen tetanus toxoid, further suggesting that peripheral blood T cell responses are related to a general subject hyperreactivity. These data suggest that proliferative T cell responses to peptides containing putative autoreactive epitopes of GAD65 and proinsulin are not specific for type 1 diabetes, that correlation between T cell reactivity to peptides is not restricted to those containing homologous regions, and that non-antigen-specific factors are important determinants of in vitro measurements of T cell reactivity.  相似文献   

13.
Although potentially autoreactive T cells are present even in healthy subjects, most individuals do not develop autoimmune disease. It has been well demonstrated that CD4+ CD25+ regulatory T cells play a significant role in controlling the expansion of autoreactive T cells in the periphery. However, some healthy individuals exhibit measurable responses to self peptide even in the presence of CD4+ CD25+ regulatory cells. This article describes the regulation of human CD4+ T cell responses to glutamic acid decarboxylase 65 (GAD65), an autoantigen implicated in type-1 diabetes, by autologous CD8+ suppressor T cells. In cells cultured from healthy individuals, the inclusion of autologous CD8+ T cells at physiological levels resulted in a dramatic decrease in the magnitude of in vitro CD4+ T cell responses to GAD65 peptide. Based on transwell experiments, the observed suppression was cell contact-dependent. However, antibody blocking studies indicated that suppression was mediated by IL-10. Cell fractionation studies suggested that CD8+ suppressor T cells originate from the CD45RA+ CD27- population. The suppression of CD4+ T cell responses to GAD65 in healthy individuals raises the possibility that CD8+ suppressor T cells play an important role in controlling potentially autoreactive T cells in the general population.  相似文献   

14.
T cells reacting with pancreatic islet beta cell proteins play a pivotal role in the pathogenesis of type 1 diabetes in experimental animal models and man, although the islet cell autoantigens against which these T cells are directed remain to be characterized. We have previously shown the presence of disease-related antigens residing in the transplantable RIN insulinoma membranes which are recognized by T cells from diabetic NOD mice. We now report on the establishment of CD4+, T cell lines reacting with insulinoma membranes from six newly diagnosed type 1 diabetic patients. Detailed examination of T cell lines from two patients revealed that both the lines continued to react with normal islet cell proteins and, interestingly, were also stimulated by antigens present in brain microsomes. The two T cell lines showed reactivity with different molecular weight proteins of the insulinoma membranes and both the lines were histocompatibility-linked antigen (HLA)-DR restricted. Although the insulinoma membrane preparation is known to contain glutamic acid decarboxylase (GAD), none of the six T cell lines proliferates in response to purified GAD. These T cell lines will be valuable in characterizing novel islet beta cell antigens which are likely to be implicated in type 1 diabetes.  相似文献   

15.
Type 1 diabetes results from destruction of insulin-producing beta cells in pancreatic islets and is characterized by islet cell autoimmunity. Autoreactivity against non-beta cell-specific antigens has also been reported, including targeting of the calcium-binding protein S100β. In preclinical models, reactivity of this type is a key component of the early development of insulitis. To examine the nature of this response in type 1 diabetes, we identified naturally processed and presented peptide epitopes derived from S100β, determined their affinity for the human leucocyte antigen (HLA)-DRB1*04:01 molecule and studied T cell responses in patients, together with healthy donors. We found that S100β reactivity, characterized by interferon (IFN)-γ secretion, is a characteristic of type 1 diabetes of varying duration. Our results confirm S100β as a target of the cellular autoimmune response in type 1 diabetes with the identification of new peptide epitopes targeted during the development of the disease, and support the preclinical findings that autoreactivity against non-beta cell-specific autoantigens may have a role in type 1 diabetes pathogenesis.  相似文献   

16.
The structural characteristics of the engagement of major histocompatibility complex (MHC) class II-restricted self antigens by autoreactive T cell antigen receptors (TCRs) is established, but how autoimmune TCRs interact with complexes of self peptide and MHC class I has been unclear. Here we examined how CD8(+) T cells kill human islet beta cells in type 1 diabetes via recognition of a human leukocyte antigen HLA-A*0201-restricted glucose-sensitive preproinsulin peptide by the autoreactive TCR 1E6. Rigid 'lock-and-key' binding underpinned the 1E6-HLA-A*0201-peptide interaction, whereby 1E6 docked similarly to most MHC class I-restricted TCRs. However, this interaction was extraordinarily weak because of limited contacts with MHC class I. TCR binding was highly peptide centric, dominated by two residues of the complementarity-determining region 3 (CDR3) loops that acted as an 'aromatic-cap' over the complex of peptide and MHC class I (pMHCI). Thus, highly focused peptide-centric interactions associated with suboptimal TCR-pMHCI binding affinities might lead to thymic escape and potential CD8(+) T cell-mediated autoreactivity.  相似文献   

17.
Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease with a predominantly non-hereditary etiology that results in a destruction of pancreatic beta cells by autoaggressive T lymphocytes. Neither the mechanism of initial stimulation of these T cells nor the nature of the environmental factors implicated in the disease have so far been identified. However, both issues are taken into account by the hypothesis of initial T cell activation by viral or bacterial mimicry peptides with sequence similarities to pancreatic self antigens. We determined sequential epitope motifs to search for mimicry peptides stimulating T cell lines specific for two epitopes derived from the IDDM autoantigen 65-kDa glutamic acid decarboxylase (GAD65). These were GAD65 (88 – 99), presented by HLA-DRB1*0101, and GAD65 (248 – 257), presented by HLA-DRB5*0101. T cell stimulation by peptides with substitutions in HLA anchor or T cell contact positions was analyzed to establish degenerate epitope motifs for database searching. Out of 28 tested candidate mimicry peptides derived from bacterial, viral and human proteins, 3 stimulated T cell lines and a T cell clone specific for epitope GAD65 (248 – 257). Our results demonstrate that mono- and polyclonal GAD65-specific T cells from IDDM patients can be stimulated by viral and bacterial peptides with little apparent sequence homology with autoantigenic epitopes. Moreover, in a synopsis with related published studies, our findings suggest that simple degenerate search motifs comprising principal T cell contacts plus HLA class II binding motifs may suffice to identify most mimicry peptides.  相似文献   

18.
Type 1 diabetes is associated with T‐cell responses to β‐cell antigens such as GAD65. Single T‐cell epitopes have been investigated for immune monitoring with some success, but multiple epitopes may be required to fully characterize responses in all subjects. We used a systematic approach to examine the diversity of the GAD65‐specific T‐cell repertoire in subjects with DRB1*04:01 haplotypes. Using class II tetramers, we observed responses to 15 GAD65 epitopes, including five novel epitopes. The majority were confirmed to be processed and presented. Upon stimulation with peptides, GAD‐specific responses were equally broad in subjects with diabetes and healthy controls in the presence or absence of CD25+ T cells, suggesting that a susceptible HLA is sufficient to generate a potentially autoreactive repertoire. Without depleting CD25+ cells, GAD113–132 and GAD265–284 responses were significantly stronger in subjects with diabetes. Although nearly every individual responded to at least one GAD65 epitope, most were seen in less than half of the subjects tested, suggesting that multiple epitopes are recommended for immune monitoring.  相似文献   

19.
Autoreactive CD4 T cells play a central role in the development of type 1 diabetes. The BDC panel of diabetogenic T cell clones was originally isolated from non-obese diabetic mice and has been used to study the role of autoreactive CD4 T cells and T cell autoantigens in the development of diabetes. Recent studies by our group have led to the identification of two new target antigens for clones of this panel. This review describes the proteomic strategy used for antigen identification, the antigens identified, and the potential contribution of post-translational modification to autoantigen generation. In addition, we compare peptide epitopes for the T cell clones and discuss their potential applications in investigating the role of T cell autoantigens in the pathogenesis and regulation of disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号