首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rabies virus antigen-specific human monoclonal antibodies (MAbs) that recognized either viral glycoprotein, ribonucleoprotein, or matrix proteins were generated. Only glycoprotein-specific MAb neutralized a variety of rabies viruses and protected laboratory rodents against lethal rabies virus infection. The determinant recognized by this MAb does not appear to reside in previously defined antigenic sites of the viral glycoprotein.  相似文献   

2.
The need to replace rabies immune globulin (RIG) as an essential component of rabies postexposure prophylaxis is widely acknowledged. We set out to discover a unique combination of human monoclonal antibodies (MAbs) able to replace RIG. Stringent criteria concerning neutralizing potency, affinity, breadth of neutralization, and coverage of natural rabies virus (RV) isolates and in vitro escape mutants were set for each individual antibody, and the complementarities of the two MAbs were defined at the onset. First, we identified and characterized one human MAb (CR57) with high in vitro and in vivo neutralizing potency and a broad neutralization spectrum. The linear antibody binding site was mapped on the RV glycoprotein as antigenic site I by characterizing CR57 escape mutants. Secondly, we selected using phage display a complementing antibody (CR4098) that recognized a distinct, nonoverlapping epitope (antigenic site III), showed similar neutralizing potency and breadth as CR57, and neutralized CR57 escape mutants. Reciprocally, CR57 neutralized RV variants escaping CR4098. Analysis of glycoprotein sequences of natural RV isolates revealed that the majority of strains contain both intact epitopes, and the few remaining strains contain at least one of the two. In vitro exposure of RV to the combination of CR57 and CR4098 yielded no escape mutants. In conclusion, a novel combination of human MAbs was discovered suitable to replace RIG.  相似文献   

3.
GB virus type C (GBV-C) is a human flavivirus that may cause persistent infection, although most infected individuals clear viremia and develop antibodies to the envelope glycoprotein E2. To study GBV-C E2 antigenicity and cell binding, murine anti-E2 monoclonal antibodies (MAbs) were evaluated to topologically map immunogenic sites on GBV-C E2 and for the ability to detect or block recombinant E2 binding to various cell lines. Five competition groups of MAbs were identified. Groups I and II did not compete with each other. Group III competed with both groups I and II. Group IV did not compete with group I, II, or III. One MAb competed with all of the other MAbs, suggesting that the epitopes bound by these MAbs are intimately related. Individually, none of the MAbs competed extensively with polyclonal human convalescent antibody (PcAb); however, combinations of all five MAb groups completely blocked PcAb binding to E2, suggesting that the epitopes bound by these MAbs form a single, immunodominant antigenic site. Only group I and III MAbs detected purified recombinant E2 bound to cells in binding assays. In contrast, group II MAbs neutralized the binding of E2 to cells. Both PcAb and MAbs were conformation dependent, with the exception of one group II MAb (M6). M6 bound to a five-amino-acid sequence on E2 if the peptide included four C-terminal or eight N-terminal residues, suggesting that the GBV-C E2 protein contains a single immunodominant antigenic site which includes a complex epitope that is involved in specific cellular binding.  相似文献   

4.
A set of 29 monoclonal antibodies (MAbs) specific for the rabies virus nucleoprotein (N protein) was prepared and used to analyze the topography of antigenic sites. At least four partially overlapping antigenic sites were delineated on the N protein of rabies virus by competitive binding assays. Indirect immunofluorescent antibody tests using MAbs with a series of rabies and rabies-related viruses showed that epitopes shared by various fixed and street strains of rabies virus were mainly localized at antigenic sites II and III, while epitopes representing the genus-specific antigen of Lyssavirus were widely presented at sites I, III and IV. All but one of seven MAbs specific for antigenic sites I, IV and bridge site (I and II) reacted with the antigen that had been denatured by sodium dodecyl sulfate or 2-mercaptoethanol, as well as with the denatured N protein in Western blotting assays. However, none of the MAbs against antigenic sites II and III reacted with the denatured antigen. These data indicate that antigenic sites I and IV, and sites II and III on the N protein of rabies virus are composed of linear and conformation-dependent epitopes, respectively.  相似文献   

5.
Rabies is a fatal viral encephalitis which is transmitted by exposure to the bite of rabid animals. Human and equine rabies immunoglobulins are indispensable pharmacological agents for severe bite exposure, as is vaccine. However, several disadvantages, including limited supply, adverse reactions, and high cost, hamper their wide application in developing countries. In the present study, two novel huMabs which neutralize rabies virus were established from vaccinated hyperimmune volunteers using the Epstein‐Barr virus transformation method. One MAb (No. 254), which was subclass IgG3, effectively neutralized fixed rabies viruses of CVS, ERA, HEP‐Flury, and Nishigahara strains and recognized a well‐conserved epitope located in antigenic site II of the rabies virus glycoprotein. No. 254 possessed 68 ng/ml of FRNT50 activity against CVS, 3.7 × 10?7 M of the Kd value, and the enhancing effect of complement‐dependent virolysis. In addition, No. 254 showed effective neutralization potency in vivo in the mouse challenge test. The other MAb, 4D4, was subclass IgM and showed neutralizing activity against CVS and Nishigahara strains. 4D4 recognized a novel antigenic site which is associated with the neurovirulence of rabies, a glycoprotein located between antigenic site I and VI. Both human MAbs against rabies are expected to be utilized as a tool for future post‐exposure prophylaxis.  相似文献   

6.
Thirty-five monoclonal antibodies (MAbs) against glycoprotein (G protein) of the RC-HL strain of the rabies virus have been established. Using these MAbs, two antigenic sites (I and II) were delineated on the G protein of the RC-HL strain in a competitive binding assay. Of these, 34 MAbs recognized the epitopes on site IL Site II was further categorized into 10 subsites according to their patterns in a competitive binding assay. Each site II-specific MAb showed 5 to 23 nonreciprocal competitions. The reactivities of 35 MAbs to rabies and rabies-related viruses in an indirect immunofluorescent antibody test showed that six MAbs in group A binded to rabies and rabies-related viruses and eight MAbs in group E reacted only with rabies viruses, considering that the former represent the genus-specific of Lyssavirus and the latter are rabies virus-specific. From biological assays, 28 of the 35 MAbs showed neutralization activity, 31 showed hemagglutination inhibition (HI) activity, and 18 showed immunolysis (IL) activity. The MAbs recognizing neutralization epitopes fell into at least three groups: those exhibiting both HI and IL activity, those showing only HI activity, and those showing neither HI nor IL activity. All IL epitopes overlap with HA epitopes. Five of the nine MAbs which reacted with the antigen treated by sodium dodecyl sulfate in ELISA were not reduced, or reduced only slightly, in the titer. None of the MAbs reacted with 2-mercaptoethanol-treated antigen. Only one MAb that recognized site I reacted with the denatured G protein in a Western blotting assay, indicating that its epitope is linear. These results suggest that almost all of the epitopes on the G protein of the rabies virus are conformation-dependent and the G protein forms a complicated antigenic structure.  相似文献   

7.
Analysis of neutralizing epitopes on foot-and-mouth disease virus.   总被引:18,自引:11,他引:7       下载免费PDF全文
For the investigation of the antigenic determinant structure of foot-and-mouth disease virus (FMDV), neutralizing monoclonal antibodies (MAbs) against complete virus were characterized by Western blot (immunoblot), enzyme immunoassay, and competition experiments with a synthetic peptide, isolated coat protein VP1, and viral particles as antigens. Two of the four MAbs reacted with each of these antigens, while the other two MAbs recognized only complete viral particles and reacted only very poorly with the peptide. The four MAbs showed different neutralization patterns with a panel of 11 different FMDV strains. cDNA-derived VP1 protein sequences of the different strains were compared to find correlations between the primary structure of the protein and the ability of virus to be neutralized. Based on this analysis, it appears that the first two MAbs recognized overlapping sequential epitopes in the known antigenic site represented by the peptide, whereas the two other MAbs recognized conformational epitopes. These conclusions were supported and extended by structural analyses of FMDV mutants resistant to neutralization by an MAb specific for a conformational epitope. These results demonstrate that no amino acid exchanges had occurred in the primary antigenic site of VP1 but instead in the other coat proteins VP2 and VP3, which by themselves do not induce neutralizing antibodies.  相似文献   

8.
Monoclonal antibody (mAb) #1-30-44 recognized an acid-sensitive conformational epitope of rabies virus glycoprotein (G). The antigenicity of G protein exposed on the cell surface was lost when the infected cells were exposed to pH 5.8. By comparing the deduced amino acid sequence of G protein between the HEP-Flury strain and the epitope-negative CVS strain as well as the mAb-resistant escape mutants, two distant sites that contained Lys-202 and Asn-336 were shown to be involved in the epitope formation. Lys-202 is located in the so-called neurotoxin-like sequence, while Asn-336 is included in antigenic site III and is very near the amino acid at position 333, which is known to affect greatly the neuropathogenicity of rabies virus when changed. Consistent with this finding, antigenicity of a neurovirulent revertant of the HEP-Flury strain, in which Gln-333 of G protein was replaced by Arg, was also affected as shown by its greatly decreased reactivity with mAb #1-30-44 compared to that of the original avirulent HEP virus. Based on these results, we hypothesize that the neurotoxin-like domain and some amino acids in antigenic site III come into contact with each other to form a conformational epitope for mAb #1-30-44, and such a configuration would be lost when exposed to acidic conditions to perform a certain low pH-dependent function of G protein.  相似文献   

9.
We mapped the hemagglutinin (HA) antigenic epitopes of a highly pathogenic H5N1 influenza virus on the three-dimensional HA structure by characterizing escape mutants of a recombinant virus containing A/Vietnam/1203/04 (H5N1) ΔHA and neuraminidase genes in the genetic background of A/Puerto Rico/8/34 (H1N1) virus. The mutants were selected with a panel of eight anti-HA monoclonal antibodies (MAbs), seven to A/Vietnam/1203/04 (H5N1) virus and one to A/Chicken/Pennsylvania/8125/83 (H5N2) virus, and the mutants’ HA genes were sequenced. The amino acid changes suggested three MAb groups: four MAbs reacted with the complex epitope comprising parts of the antigenic site B of H3 HA and site Sa of H1 HA, two MAbs reacted with the epitope corresponding to the antigenic site A in H3 HA, and two MAbs displayed unusual behavior: each recognized amino acid changes at two widely separate antigenic sites. Five changes were detected in amino acid residues not previously reported as changed in H5 escape mutants, and four others had substitutions not previously described. The HA antigenic structure differs substantially between A/Vietnam/1203/04 (H5N1) virus and the low-pathogenic A/Mallard/Pennsylvania/10218/84 (H5N2) virus we previously characterized (N. V. Kaverin et al., J. Gen. Virol. 83:2497-2505, 2002). The hemagglutination inhibition reactions of the MAbs with recent highly pathogenic H5N1 viruses were consistent with the antigenic-site amino acid changes but not with clades and subclades based on H5 phylogenetic analysis. These results provide information on the recognition sites of the MAbs widely used to study H5N1 viruses and demonstrate the involvement of the HA antigenic sites in the evolution of highly pathogenic H5N1 viruses, findings that can be critical for characterizing pathogenesis and vaccine design.  相似文献   

10.
As the demand for rabies post-exposure prophylaxis (PEP) treatments has increased exponentially in recent years, the limited supply of human and equine rabies immunoglobulin (HRIG and ERIG) has failed to provide the required passive immune component in PEP in countries where canine rabies is endemic. Replacement of HRIG and ERIG with a potentially cheaper and efficacious alternative biological for treatment of rabies in humans, therefore, remains a high priority. In this study, we set out to assess a mouse monoclonal antibody (MoMAb) cocktail with the ultimate goal to develop a product at the lowest possible cost that can be used in developing countries as a replacement for RIG in PEP. Five MoMAbs, E559.9.14, 1112-1, 62-71-3, M727-5-1, and M777-16-3, were selected from available panels based on stringent criteria, such as biological activity, neutralizing potency, binding specificity, spectrum of neutralization of lyssaviruses, and history of each hybridoma. Four of these MoMAbs recognize epitopes in antigenic site II and one recognizes an epitope in antigenic site III on the rabies virus (RABV) glycoprotein, as determined by nucleotide sequence analysis of the glycoprotein gene of unique MoMAb neutralization-escape mutants. The MoMAbs were produced under Good Laboratory Practice (GLP) conditions. Unique combinations (cocktails) were prepared, using different concentrations of the MoMAbs that were capable of targeting non-overlapping epitopes of antigenic sites II and III. Blind in vitro efficacy studies showed the MoMab cocktails neutralized a broad spectrum of lyssaviruses except for lyssaviruses belonging to phylogroups II and III. In vivo, MoMAb cocktails resulted in protection as a component of PEP that was comparable to HRIG. In conclusion, all three novel combinations of MoMAbs were shown to have equal efficacy to HRIG and therefore could be considered a potentially less expensive alternative biological agent for use in PEP and prevention of rabies in humans.  相似文献   

11.
An immunochemical analysis of the hemagglutinin (VP4) of the simian rotavirus SA11 was performed to better understand the structure and function of this molecule. Following immunization of mice with double-shelled virus particles and VP4-enriched fractions from CsCl gradients, a battery of anti-SA11 hybridomas was generated. A total of 13 clones secreting high levels of anti-VP4 monoclonal antibody (MAb) was characterized and compared with two cross-reactive anti-VP4 MAbs generated against heterologous rhesus (RRV) and porcine (OSU) rotavirus strains. These cross-reactive MAbs effectively neutralized SA11 infectivity in vitro. The epitopes recognized by these 15 MAbs were grouped into six antigenic sites on the SA11 hemagglutinin. These sites were identified following analysis of the MAbs by using a simple competitive binding enzyme-linked immunosorbent assay (ELISA) and biological assays. Three of the antigenic sites were involved in neutralization of virus infectivity in vitro. All the MAbs with neutralization activity and two nonneutralizing MAbs were able to inhibit viral hemagglutination of human erythrocytes. Competitive binding ELISA data showed a positive cooperative binding effect with some pairs of the anti-VP4 MAbs, apparently due to a conformational change induced by the binding of the first MAb. Some of the MAbs also bound better to trypsin-treated virus than to non-trypsin-treated virus. A topographic map for VP4 is proposed on the basis of the observed properties of each antigenic site.  相似文献   

12.
Six poliovirus-neutralizing Fabs were recovered from a combinatorial Fab phage display library constructed from bone marrow-derived lymphocytes of immunized chimpanzees. The chimeric chimpanzee-human full-length IgGs (hereinafter called monoclonal antibodies [MAbs]) were generated by combining a chimpanzee IgG light chain and a variable domain of heavy chain with a human constant Fc region. The six MAbs neutralized vaccine strains and virulent strains of poliovirus. Five MAbs were serotype specific, while one MAb cross-neutralized serotypes 1 and 2. Epitope mapping performed by selecting and sequencing antibody-resistant viral variants indicated that the cross-neutralizing MAb bound between antigenic sites 1 and 2, thereby covering the canyon region containing the receptor-binding site. Another serotype 1-specific MAb recognized a region located between antigenic sites 2 and 3 that included parts of capsid proteins VP1 and VP3. Both serotype 2-specific antibodies recognized antigenic site 1. No escape mutants to serotype 3-specific MAbs could be generated. The administration of a serotype 1-specific MAb to transgenic mice susceptible to poliovirus at a dose of 5 μg/mouse completely protected them from paralysis after challenge with a lethal dose of wild-type poliovirus. Moreover, MAb injection 6 or 12 h after virus infection provided significant protection. The MAbs described here could be tested in clinical trials to determine whether they might be useful for treatment of immunocompromised chronic virus excretors and for emergency protection of contacts of a paralytic poliomyelitis case.  相似文献   

13.
Hybridomas producing monoclonal antibodies (MAb) to Yersinia pseudotuberculosis, serovars I-IV, responsible for serovar appurtenance, were obtained. Virtually all MAbs reacted with protein antigens in immunoblotting. The only exclusion was MAb 3A2 presumably reacting with a glycoprotein epitope of complex structure. Variability of Y. pseudotuberculosis antigenic structure, depending on culturing temperature, was confirmed. Polypeptides with mono- or polydetermined antigenic specificity were determined using MAbs.  相似文献   

14.
In an earlier report (S.D. Marlin, S.L. Highlander, T.C. Holland, M. Levine, and J.C. Glorioso, J. Virol. 59: 142-153), we described the production and use of complement-dependent virus-neutralizing monoclonal antibodies (MAbs) and MAb-resistant (mar) mutants to identify five antigenic sites (I to V) on herpes simplex virus type 1 glycoprotein B (gB). In the present study, the mechanism of virus neutralization was determined for a MAb specific for site III (B4), the only site recognized by MAbs which exhibited complement-independent virus-neutralizing ability. This antibody had no detectable effect on virus attachment but neutralized viruses after adsorption to cell monolayers. These findings implied that the mechanism of B4 neutralization involved blocking of virus penetration. The remaining antibodies, which recognized sites I, II, and IV, required active complement for effective neutralization. These were further studied for their ability to impede virus infectivity in the absence of complement. Antibodies to sites I (B1 and B3) and IV (B6) slowed the rate at which viruses penetrated cell surfaces, supporting the conclusion that antibody binding to gB can inhibit penetration by a virus. The data suggest that MAbs can interfere with penetration by a virus by binding to a domain within gB which is involved in this process. In another assay of virus infection, MAb B6 significantly reduced plaque development, indicating that antibody binding to gB expressed on infected-cell surfaces can also interfere with the ability of a virus to spread from cell to cell. In contrast to these results, antibodies to site II (B2 and B5) had no effect on virus infectivity; this suggests that they recognized structures which do not play a direct role in the infectious process. To localize regions of gB involved in these phenomena, antibody-binding sites were operationally mapped by radioimmunoprecipitation of a panel of truncated gB molecules produced in transient-expression assays. Residues critical to recognition by antibodies which affect penetration by a virus (sites I, III, and IV) mapped to a region of the molecule (amino acid residues 241 to 441) which is centrally located within the external domain. Antibodies which had no effect on penetration (site II) recognized sequences distal to this region (residues 596 to 737) near the transmembrane domain. The data suggest that these gB-specific MAbs recognize two major antigenic sites which reside in physically distinct components of the external domain of gB.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
We have investigated a phosphatase-sensitive sequential epitope of the nucleoprotein (N), one of the phosphoproteins of rabies virus, which is recognized by the monoclonal antibody (MAb) #5-2-26. The epitope was shared in common by all of the rabies virus strains we tested, including the HEP, ERA, CVS and Japanese strains (Nishigahara and Komatsukawa). Thin layer chromatography of the acid hydrolyzates of 32P-labeled N protein showed that the protein contained phosphoserine and phospho-threonine at a molar ratio of about 4 to 1, while no phosphotyrosine was detected. Immunoprecipitation studies with several deletion mutants of the N protein showed that the epitope is located in a region spanning from amino acid 344 to 415. If the phosphatase-sensitive epitope is located at or near the phosphoamino acid, the location of the latter could be narrowed further to a region from amino acid 354 to 389 by comparing the amino-acid sequences among the viral strains. To examine this assumption, point mutation was introduced by amino-acid substitution with alanine at either of five potential phosphorylation sites (i.e., positions 354, 375, 377, 386 and 389) in the 354–389 region. Among those, only one substitution, at position 389, greatly affected the antigenicity. Substitution of serine-389 by threonine also reduced the antigenicity. These results strongly suggest that serine-389 is a phosphorylation site and essential for constructing or stabilizing the antigenic structure for MAb 5-2-26.  相似文献   

16.
Broadly neutralizing monoclonal antibodies (MAbs) are potentially important tools in human immunodeficiency virus type 1 (HIV-1) vaccine design. A few rare MAbs have been intensively studied, but we still have a limited appreciation of their neutralization breadth. Using a pseudovirus assay, we evaluated MAbs from clade B-infected donors and a clade B HIV(+) plasma against 93 viruses from diverse backgrounds. Anti-gp120 MAbs exhibited greater activity against clade B than non-B viruses, whereas anti-gp41 MAbs exhibited broad interclade activity. Unexpectedly, MAb 4E10 (directed against the C terminus of the gp41 ectodomain) neutralized all 90 viruses with moderate potency. MAb 2F5 (directed against an epitope adjacent to that of 4E10) neutralized 67% of isolates, but none from clade C. Anti-gp120 MAb b12 (directed against an epitope overlapping the CD4 binding site) neutralized 50% of viruses, including some from almost every clade. 2G12 (directed against a high-mannose epitope on gp120) neutralized 41% of the viruses, but none from clades C or E. MAbs to the gp120 V3 loop, including 447-52D, neutralized a subset of clade B viruses (up to 45%) but infrequently neutralized other clades (相似文献   

17.
Anti-rabies virus immunoglobulin combined with rabies vaccine protects humans from lethal rabies infections. For cost and safety reasons, replacement of the human or equine polyclonal immunoglobulin is advocated, and the use of rabies virus-specific monoclonal antibodies (MAbs) is recommended. We produced two previously described potent rabies virus-neutralizing human MAbs, CR57 and CRJB, in human PER.C6 cells. The two MAbs competed for binding to rabies virus glycoprotein. Using CR57 and a set of 15-mer overlapping peptides covering the glycoprotein ectodomain, a neutralization domain was identified between amino acids (aa) 218 and 240. The minimal binding region was identified as KLCGVL (aa 226 to 231), with key residues K-CGV- identified by alanine replacement scanning. The critical binding region of this novel nonconformational rabies virus epitope is highly conserved within rabies viruses of genotype 1. Subsequently, we generated six rabies virus variants escaping neutralization by CR57 and six variants escaping CRJB. The CR57 escape mutants were only partially covered by CRJB, and all CRJB-resistant variants completely escaped neutralization by CR57. Without exception, the CR57-resistant variants showed a mutation at key residues within the defined minimal binding region, while the CRJB escape viruses showed a single mutation distant from the CR57 epitope (N182D) combined with mutations in the CR57 epitope. The competition between CR57 and CRJB, the in vitro escape profile, and the apparent overlap between the recognized epitopes argues against including both CR57 and CRJB in a MAb cocktail aimed at replacing classical immunoglobulin preparations.  相似文献   

18.
Immunity to poliomyelitis is largely dependent on humoral neutralizing antibodies, both after natural (wild virus or vaccine) infection and after inactivated poliovirus vaccine inoculation. Although the production of local secretory immunoglobulin A (IgA) antibody in the gut mucosa may play a major role in protection, most of information about the antigenic determinants involved in neutralization of polioviruses derives from studies conducted with humoral monoclonal antibodies (MAbs) generated from parenterally immunized mice. To investigate the specificity of the mucosal immune response to the virus, we have produced a library of IgA MAbs directed at Sabin type 1 poliovirus by oral immunization of mice with live virus in combination with cholera toxin. The epitopes recognized by 13 neutralizing MAbs were characterized by generating neutralization-escape virus mutants. Cross-neutralization analysis of viral mutants with MAbs allowed these epitopes to be divided into four groups of reactivity. To determine the epitope specificity of MAbs, virus variants were sequenced and the mutations responsible for resistance to the antibodies were located. Eight neutralizing MAbs were found to be directed at neutralization site N-AgIII in capsid protein VP3; four more MAbs recognized site N-AgII in VP1 or VP2. One IgA MAb selected a virus variant which presented a unique mutation at amino acid 138 in VP2, not previously described. This site appears to be partially related with site N-AgII and is located in a loop region facing the VP2 N-Ag-II loop around residue 164. Only 2 of 13 MAbs proved able to neutralize the wild-type Mahoney strain of poliovirus. The IgA antibodies studied were found to be produced in the dimeric form needed for recognition by the polyimmunoglobulin receptor mediating secretory antibody transport at the mucosal level.  相似文献   

19.
Human herpesvirus 6 (HHV-6) is a T cell-tropic betaherpesvirus. HHV-6 can be classified into two variants, HHV-6A and HHV-6B, based on differences in their genetic, antigenic, and growth characteristics and cell tropisms. The function of HHV-6B should be analyzed more in its life cycle, as more than 90% of people have the antibodies for HHV-6B but not HHV-6A. It has been shown that the cellular receptor for HHV-6A is human CD46 and that the viral ligand for CD46 is the envelope glycoprotein complex gH/gL/gQ1/gQ2; however, the receptor-ligand pair used by HHV-6B is still unknown. In this study, to identify the glycoprotein(s) important for HHV-6B entry, we generated monoclonal antibodies (MAbs) that inhibit infection by HHV-6B. Most of these MAbs were found to recognize gQ1, indicating that HHV-6B gQ1 is critical for virus entry. Interestingly, the recognition of gQ1 by the neutralizing MAb was enhanced by coexpression with gQ2. Moreover, gQ1 deletion or point mutants that are not recognized by the MAb could nonetheless associate with gQ2, indicating that although the MAb recognized the conformational epitope of gQ1 exposed by the gQ2 interaction, this epitope was not related to the gQ2 binding domain. Our study shows that HHV-6B gQ1 is likely a ligand for the HHV-6B receptor, and the recognition site for this MAb will be a promising target for antiviral agents.  相似文献   

20.
Herpes simplex virus type 1 (HSV-1) glycoprotein C (gC-1) elicits a largely serotype-specific immune response directed against previously described determinants designated antigenic sites I and II. To more precisely define these two immunodominant antigenic regions of gC-1 and to determine whether the homologous HSV-2 glycoprotein (gC-2) has similarly situated antigenic determinants, viral recombinants containing gC chimeric genes which join site I and site II of the two serotypes were constructed. The antigenic structure of the hybrid proteins encoded by these chimeric genes was studied by using gC-1- and gC-2-specific monoclonal antibodies (MAbs) in radioimmunoprecipitation, neutralization, and flow cytometry assays. The results of these analyses showed that the reactivity patterns of the MAbs were consistent among the three assays, and on this basis, they could be categorized as recognizing type-specific epitopes within the C-terminal or N-terminal half of gC-1 or gC-2. All MAbs were able to bind to only one or the other of the two hybrid proteins, demonstrating that gC-2, like gC-1, contains at least two antigenic sites located in the two halves of the molecule and that the structures of the antigenic sites in both molecules are independent and rely on limited type-specific regions of the molecule to maintain epitope structure. To fine map amino acid residues which are recognized by site I type-specific MAbs, point mutations were introduced into site I of the gC-1 or gC-2 gene, which resulted in recombinant mutant glycoproteins containing one or several residues from the heterotypic serotype in an otherwise homotypic site I background. The recognition patterns of the MAbs for these mutant molecules demonstrated that (i) single amino acids are responsible for the type-specific nature of individual epitopes and (ii) epitopes are localized to regions of the molecule which contain both shared and unshared amino acids. Taken together, the data described herein established the existence of at least two distinct and structurally independent antigenic sites in gC-1 and gC-2 and identified subtle amino acid sequence differences which contribute to type specificity in antigenic site I of gC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号