共查询到17条相似文献,搜索用时 78 毫秒
1.
经典的卷积神经网络文本分类模型仅仅着眼于全局特征,没有考虑到局部特征.为了解决此问题,引入了注意力机制,用于提取文本中的关键词,把全局特征与局部特征综合在一起,使得文本的特征表达更加丰富.实验结果表明:卷积神经网络分类模型比传统的机器学习方法分类效果更好,而引入注意力机制后的卷积神经网络模型相比于经典的文本分类模型,分类效果也有了一定程度的提高. 相似文献
2.
《内蒙古大学学报(自然科学版)》2021,52(5):508-513
自然语言处理中,文本情绪分类目前以情感极性分类居多,更加细粒度的情绪分类却很少,并且基本上都为英文文本情绪分类。本文针对中文文本情绪分类,设计并实现了一种双通道多核卷积神经网络中文文本情绪分类方法。在特征提取部分,设计了双通道特征提取方法,采用word2vec预先训练词向量的词袋方式并引入注意力机制,提取的特征向量在关注局部特征信息的基础上加入了文本上下文之间的关系信息,能够涵盖文本全局特征;在卷积部分,设计了多种不同卷积核分别卷积池化后再组合的方式,从而得到更加全面的文本特征。理论分析和实验结果表明,双通道多核卷积神经网络中文文本情绪分类方法分类准确率达86%,比单层卷积神经网络的分类准确率提高了4%,同时解决了单层卷积神经网络特征提取不够全面和多层卷积神经网络特征提取过于抽象的问题。 相似文献
3.
文本分类是自然语言处理与理解当中重要的一个研究内容,在文本信息处理过程中有关键作用.目前深度学习已经在图像识别、机器翻译等领域取得了突破性的进展,而且它也被证明在自然语言处理任务中拥有着提取句子或文本更高层次表示的能力,也备受自然语言处理研究人员的关注.文章以基于深度学习的文本分类技术为研究背景,介绍了几种基于深度学习神经网络模型的文本分类方法,并对其进行分析. 相似文献
4.
经典的LSTM分类模型,一种是利用LSTM最后时刻的输出作为高一级的表示,而另一种是将所有时刻的LSTM输出求平均作为高一级的表示.这两种表示都存在一定的缺陷,第一种缺失了前面的输出信息,另一种没有体现每个时刻输出信息的不同重要程度.为了解决此问题,引入Attention机制,对LSTM模型进行改进,设计了LSTM-Attention模型.实验结果表明:LSTM分类模型比传统的机器学习方法分类效果更好,而引入Attention机制后的LSTM模型相比于经典的文本分类模型,分类效果也有了一定程度的提升. 相似文献
5.
单词级别的浅层卷积神经网络(CNN)模型在文本分类任务上取得了良好的表现.然而,浅层CNN模型由于无法捕捉长距离依赖关系,影响了模型在文本分类任务上的效果.简单地加深模型层数并不能提升模型的效果.本文提出一种新的单词级别的文本分类模型Word-CNN-Att,该模型使用CNN捕捉局部特征和位置信息,利用自注意力机制捕捉长距离依赖.在AGNews、DBPedia、Yelp Review Polarity、Yelp Review Full、Yahoo! Answers等5个公开的数据集上,Word-CNN-Att比单词级别的浅层CNN模型的准确率分别提高了0.9%、0.2%、0.5%、2.1%、2.0%. 相似文献
6.
为了解决文本图神经网络小样本文本分类精度较差的问题,设计了基于文本图神经网络的原型网络,采用预训练语言模型,利用文本级图神经网络为每个输入文本构建图并共享全局参数,将文本图神经网络的结果作为原型网络的输入,对未标注文本进行分类,并验证新模型在多个文本分类数据集上的有效性。实验结果表明,与需要大量标注文档的监督学习方法相比,所采用的方法未标注文本的分类精度提高了1%~3%,在多个文本分类数据集上验证了新模型性能先进,内存占用更少。研究结果可为解决小样本文本分类问题提供参考。 相似文献
7.
基于LSTM的中文文本分类方法能够正确地识别文本所属类别,但是其主要关注于学习与主题相关的文本片段,往往缺乏利用词语其他方面的信息,特别是词性之间的隐含的特征信息。为了有效地利用词语的词性信息以便学习大量的上下文依赖特征信息并提升文本分类效果,提出了一种结合词性信息的中文文本分类方法,其能够方便地从词语及其词性中学习隐式特征信息。利用开源数据并设计一系列对比实验用于验证方法的有效性。实验结果表明,结合词性信息的基于注意力机制的双向LSTM模型,在中文文本分类方面的分类效果优于常见的一些算法。因此识别文本的类别不仅与词语语义信息高度相关,而且与词语的词性信息有很大关系。 相似文献
8.
采用图神经网络模型为整个语料库构建异构图处理文本分类任务时,存在难以泛化到新样本和词序信息缺失的问题。针对上述问题,提出了一种融合双图特征和上下文语义信息的文本分类模型。首先,为每个文本独立构建共现图和句法依存图,从而实现对新样本的归纳式学习,从双图角度捕获文本特征,解决忽略单词间依存关系的问题;其次,利用双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)编码文本,解决忽略词序特征和难以捕捉上下文语义信息的问题;最后,融合双图特征,增强图神经网络模型的分类性能。在MR,Ohsumed,R8,R52数据集上的实验结果表明,相较于经典的文本分类模型,该模型能够提取更丰富的文本特征,在准确率上平均提高了2.17%,5.38%,0.61%,2.48%。 相似文献
9.
提出并实现了一种结合BP神经网络和遗传算法的文本分类算法,根据遗传算法能够快速优化网络权重以及摆脱BP算法局部极点困扰的能力,提出一种改进的遗传算法确定网络拓扑结构和训练网络的方法.最后对设计的分类器进行了开放性测试,实验结果表明该分类器显著地提高了文本分类的查全率和查准率. 相似文献
10.
随着网络信息的迅猛发展,如何快捷、准确地识别和获取有用信息显得更为重要。文本自动分类系统是信息处理的重要研究方向,它是指在给定的分类体系下,根据文本的内容自动判别文本类别的过程。Boosting算法是一种新兴的机器学习算法。在文本分类中应用Boosting算法经过试验证明是有效的,并且优于目前的大多数分类算法。 相似文献
11.
随着深度学习的发展,方面级情感分类已经在单领域和单一语言中取得了大量的研究成果,但是在多领域的研究还有提升的空间。通过对近年来文本方面级情感分类方法进行归纳总结,介绍了情感分类的具体应用场景,整理了方面级情感分类常用的数据集,并对方面级情感分类的发展进行了总结与展望,提出未来可在以下领域开展深入研究:1)探索基于图神经网络的方法,弥补深度学习方法存在的局限性;2)学习融合多模态数据,丰富单一文本的情感信息;3)开展更多针对多语言文本和低资源语言的研究。 相似文献
12.
针对传统长短时记忆网络(long short-term memory,LSTM)在文本分类中无法自动选取最重要潜在语义因素的问题,提出一种改进的LSTM模型。首先,将传统LSTM的运算关系拓展为双向模式,使网络充分记忆输入特征词的前后关联关系;然后在输出层前面增加池化层,以便更好选择找到最重要的潜在语义因素。互联网电影资料库评论数据实验结果表明,该模型优于传统长短时记忆神经网络以及其他同类模型,揭示了改进方案对提高文本分类准确率是有效的。 相似文献
13.
文本序列中各单词的重要程度及其之间的依赖关系对于识别文本类别有重要影响。胶囊网络不能选择性关注文本中重要单词,并且由于不能编码远距离依赖关系,在识别具有语义转折的文本时有很大局限性。为解决上述问题,该文提出了一种基于多头注意力的胶囊网络模型,该模型能编码单词间的依赖关系、捕获文本中重要单词,并对文本语义编码,从而有效提高了文本分类任务的效果。结果表明:该文模型在文本分类任务中效果明显优于卷积神经网络和胶囊网络,在多标签文本分类任务上效果更优,能更好地从注意力中获益。 相似文献
14.
作为信息抽取的核心任务, 命名实体识别能够从文本中识别不同类型命名实体。 得益于深度学习在字词表示、 特征提取方面的应用, 中文命名实体识别任务取得了丰富研究成果。 然而, 中文命名实体识别任务依旧面临词汇信息缺乏的挑战, 主要表现为: 1) 词汇边界信息和上下文语义信息未充分利用; 2) 字和自匹配词汇间语义信息未能有效捕获; 3) 图注意力网络输出信息中不同交互图信息的重要性未被考虑。 该文提出一种面向中文的字词组合序列实体识别方法。 采用字词组合序列嵌入结构, 实现词汇边界信息以及字符与词汇间语义信息的充分捕捉; 采用多图注意力融合架构, 实现不同图神经网络提取特征重要性的区分。 实验表明, 相比已有经典方法, 该方法在Weibo、 Resume、 OntoNotes4.0及MSRA四个数据集上的F1明显提升, 在中文命名实体识别任务上具有可行性。 相似文献
15.
生成过程中利用词汇特征(包含n-gram和词性信息)识别更多重点词汇内容,进一步提高摘要生成质量,提出了一种基于sequence-to-sequence(Seq2Seq)结构和attention机制的、融合了词汇特征的生成式摘要算法。算法的输入层将词性向量与词向量合并后作为编码器层的输入,编码器层由双向LSTM组成,上下文向量由编码器的输出和卷积神经网络提取的词汇特征向量构成。模型中的卷积神经网络层控制词汇信息,双向LSTM控制句子信息,解码器层使用单向LSTM为上下文向量解码并生成摘要。实验结果显示,在公开数据集和自采数据集上,融合词汇特征的摘要生成模型性能优于对比模型,在公开数据集上的ROUGE-1,ROUGE-2,ROUGE-L分数分别提升了0.024,0.033,0.030。因此,摘要的生成不仅与文章的语义、主题等特征相关,也与词汇特征相关,所提出的模型在融合关键信息的生成式摘要研究中具有一定的参考价值。 相似文献
16.
针对目前各种基于长短期记忆网络 LSTM 的句子情感分类方法没有考虑词的词 性信息这一问题,将词性与自注意力机制相结合,提出一种面向句子情感分类的神经网络 模型 PALSTM(Pos and Attention-based LSTM). 首先,结合预训练词向量和词性标注工具 分别给出句子中词的语义词向量和词性词向量表示,并作为 LSTM 的输入用于学习词在 内容和词性方面的长期依赖关系,有效地弥补了一般 LSTM 单纯依赖预训练词向量中词 的共现信息的不足;接着,利用自注意力机制学习句子中词的位置信息和权重向量,并构 造句子的最终语义表示;最后由多层感知器进行分类和输出. 实验结果表明,PALSTM 在 公开语料库 Movie Reviews、Internet Movie Database 和 Stanford Sentiment Treebank 二元分 类及五元情感上的准确率均比一般的 LSTM 和注意力 LSTM 模型有一定的提升. 相似文献
17.
目前,音乐歌词情感分类大多以二标签极性情感为主,多情感标签分类却很少,并且对于情感性不确定的歌词来说,得到的分类性能并不高。为了解决多情感标签研究分类的不足以及提高分类准确性,本文提出了一种利用Word2Vec词嵌入技术,并使用多核卷积神经网络作为分类器的音乐歌词多情感分类方法。该方法首先结合音乐歌词文本,进行数据预处理和可视化分析。其次利用Word2Vec词嵌入提取歌词局部特征,构建特征情感向量,挖掘歌词中情感信息,将歌词转化为更利于分类器模型输入的词向量。最后在分类器中,选用卷积神经网络模型,并在此基础上采用不同高度卷积核的方式构建新模型以此得到多情感分类。实验结果表明,音乐歌词多情感分类的结果达到94.26%,与传统CNN相比,分类精确率提高了6.86%,取得了良好性能。 相似文献