共查询到17条相似文献,搜索用时 66 毫秒
1.
经典的卷积神经网络文本分类模型仅仅着眼于全局特征,没有考虑到局部特征.为了解决此问题,引入了注意力机制,用于提取文本中的关键词,把全局特征与局部特征综合在一起,使得文本的特征表达更加丰富.实验结果表明:卷积神经网络分类模型比传统的机器学习方法分类效果更好,而引入注意力机制后的卷积神经网络模型相比于经典的文本分类模型,分类效果也有了一定程度的提高. 相似文献
2.
《内蒙古大学学报(自然科学版)》2021,52(5):508-513
自然语言处理中,文本情绪分类目前以情感极性分类居多,更加细粒度的情绪分类却很少,并且基本上都为英文文本情绪分类。本文针对中文文本情绪分类,设计并实现了一种双通道多核卷积神经网络中文文本情绪分类方法。在特征提取部分,设计了双通道特征提取方法,采用word2vec预先训练词向量的词袋方式并引入注意力机制,提取的特征向量在关注局部特征信息的基础上加入了文本上下文之间的关系信息,能够涵盖文本全局特征;在卷积部分,设计了多种不同卷积核分别卷积池化后再组合的方式,从而得到更加全面的文本特征。理论分析和实验结果表明,双通道多核卷积神经网络中文文本情绪分类方法分类准确率达86%,比单层卷积神经网络的分类准确率提高了4%,同时解决了单层卷积神经网络特征提取不够全面和多层卷积神经网络特征提取过于抽象的问题。 相似文献
3.
文本分类是自然语言处理与理解当中重要的一个研究内容,在文本信息处理过程中有关键作用.目前深度学习已经在图像识别、机器翻译等领域取得了突破性的进展,而且它也被证明在自然语言处理任务中拥有着提取句子或文本更高层次表示的能力,也备受自然语言处理研究人员的关注.文章以基于深度学习的文本分类技术为研究背景,介绍了几种基于深度学习神经网络模型的文本分类方法,并对其进行分析. 相似文献
4.
经典的LSTM分类模型,一种是利用LSTM最后时刻的输出作为高一级的表示,而另一种是将所有时刻的LSTM输出求平均作为高一级的表示.这两种表示都存在一定的缺陷,第一种缺失了前面的输出信息,另一种没有体现每个时刻输出信息的不同重要程度.为了解决此问题,引入Attention机制,对LSTM模型进行改进,设计了LSTM-Attention模型.实验结果表明:LSTM分类模型比传统的机器学习方法分类效果更好,而引入Attention机制后的LSTM模型相比于经典的文本分类模型,分类效果也有了一定程度的提升. 相似文献
5.
单词级别的浅层卷积神经网络(CNN)模型在文本分类任务上取得了良好的表现.然而,浅层CNN模型由于无法捕捉长距离依赖关系,影响了模型在文本分类任务上的效果.简单地加深模型层数并不能提升模型的效果.本文提出一种新的单词级别的文本分类模型Word-CNN-Att,该模型使用CNN捕捉局部特征和位置信息,利用自注意力机制捕捉长距离依赖.在AGNews、DBPedia、Yelp Review Polarity、Yelp Review Full、Yahoo! Answers等5个公开的数据集上,Word-CNN-Att比单词级别的浅层CNN模型的准确率分别提高了0.9%、0.2%、0.5%、2.1%、2.0%. 相似文献
6.
基于LSTM的中文文本分类方法能够正确地识别文本所属类别,但是其主要关注于学习与主题相关的文本片段,往往缺乏利用词语其他方面的信息,特别是词性之间的隐含的特征信息。为了有效地利用词语的词性信息以便学习大量的上下文依赖特征信息并提升文本分类效果,提出了一种结合词性信息的中文文本分类方法,其能够方便地从词语及其词性中学习隐式特征信息。利用开源数据并设计一系列对比实验用于验证方法的有效性。实验结果表明,结合词性信息的基于注意力机制的双向LSTM模型,在中文文本分类方面的分类效果优于常见的一些算法。因此识别文本的类别不仅与词语语义信息高度相关,而且与词语的词性信息有很大关系。 相似文献
7.
文本序列中各单词的重要程度及其之间的依赖关系对于识别文本类别有重要影响。胶囊网络不能选择性关注文本中重要单词,并且由于不能编码远距离依赖关系,在识别具有语义转折的文本时有很大局限性。为解决上述问题,该文提出了一种基于多头注意力的胶囊网络模型,该模型能编码单词间的依赖关系、捕获文本中重要单词,并对文本语义编码,从而有效提高了文本分类任务的效果。结果表明:该文模型在文本分类任务中效果明显优于卷积神经网络和胶囊网络,在多标签文本分类任务上效果更优,能更好地从注意力中获益。 相似文献
8.
为了解决文本图神经网络小样本文本分类精度较差的问题,设计了基于文本图神经网络的原型网络,采用预训练语言模型,利用文本级图神经网络为每个输入文本构建图并共享全局参数,将文本图神经网络的结果作为原型网络的输入,对未标注文本进行分类,并验证新模型在多个文本分类数据集上的有效性。实验结果表明,与需要大量标注文档的监督学习方法相比,所采用的方法未标注文本的分类精度提高了1%~3%,在多个文本分类数据集上验证了新模型性能先进,内存占用更少。研究结果可为解决小样本文本分类问题提供参考。 相似文献
9.
采用图神经网络模型为整个语料库构建异构图处理文本分类任务时,存在难以泛化到新样本和词序信息缺失的问题。针对上述问题,提出了一种融合双图特征和上下文语义信息的文本分类模型。首先,为每个文本独立构建共现图和句法依存图,从而实现对新样本的归纳式学习,从双图角度捕获文本特征,解决忽略单词间依存关系的问题;其次,利用双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)编码文本,解决忽略词序特征和难以捕捉上下文语义信息的问题;最后,融合双图特征,增强图神经网络模型的分类性能。在MR,Ohsumed,R8,R52数据集上的实验结果表明,相较于经典的文本分类模型,该模型能够提取更丰富的文本特征,在准确率上平均提高了2.17%,5.38%,0.61%,2.48%。 相似文献
10.
提出并实现了一种结合BP神经网络和遗传算法的文本分类算法,根据遗传算法能够快速优化网络权重以及摆脱BP算法局部极点困扰的能力,提出一种改进的遗传算法确定网络拓扑结构和训练网络的方法.最后对设计的分类器进行了开放性测试,实验结果表明该分类器显著地提高了文本分类的查全率和查准率. 相似文献
11.
文本分类是自然语言处理中一个重要的研究课题。近年来,图神经网络(graph neural network,GNN)在这一典型任务中取得了良好的效果。目前基于图结构的文本分类方法存在边噪声和节点噪声干扰、缺乏文本层次信息和位置信息等问题。为了解决这些问题,提出了一种基于正则约束的分层仿射图神经网络文本分类模型Text-HARC,该模型融合了图注意力网络(graph attention network,GAT)与门控图神经网络(gated graph neural network,GGNN),引入正则约束过滤节点与边噪声,分别使用仿射模块与相对位置编码补充词语表示。通过实验,该方法在TREC、SST1、SST2、R8四个基准数据集上的准确率提升明显,消融实验结果也验证了该方法的有效性。 相似文献
12.
随着深度学习的发展,方面级情感分类已经在单领域和单一语言中取得了大量的研究成果,但是在多领域的研究还有提升的空间。通过对近年来文本方面级情感分类方法进行归纳总结,介绍了情感分类的具体应用场景,整理了方面级情感分类常用的数据集,并对方面级情感分类的发展进行了总结与展望,提出未来可在以下领域开展深入研究:1)探索基于图神经网络的方法,弥补深度学习方法存在的局限性;2)学习融合多模态数据,丰富单一文本的情感信息;3)开展更多针对多语言文本和低资源语言的研究。 相似文献
13.
文档级别情感分类旨在预测用户对评论文本的情感极性标签。最近研究发现,利用用户和产品信息能有效地提升情感分类性能,然而,现有大多数研究只关注用户与评论、产品与评论的信息,忽略了用户与用户、产品与产品之间的内在关联,因此,本文提出一种融合图卷积神经网络的文本情感分类模型。首先,根据数据集构建了用户与用户关系图、用户与产品关系图;然后,融合两种关系图形成异质图,并使用图卷积神经网络学习用户与用户、产品与产品之间的内在联系,获得更好的用户和产品表示;最后,使用融合CNN的用户注意力和产品注意力机制的分层网络进行情感分类。实验结果表明,在公开数据集IMDB、Yelp2013和Yelp2014上,本文提出的模型能取得较好的分类效果。 相似文献
14.
针对传统长短时记忆网络(long short-term memory,LSTM)在文本分类中无法自动选取最重要潜在语义因素的问题,提出一种改进的LSTM模型。首先,将传统LSTM的运算关系拓展为双向模式,使网络充分记忆输入特征词的前后关联关系;然后在输出层前面增加池化层,以便更好选择找到最重要的潜在语义因素。互联网电影资料库评论数据实验结果表明,该模型优于传统长短时记忆神经网络以及其他同类模型,揭示了改进方案对提高文本分类准确率是有效的。 相似文献
15.
提出一种基于关键 $n$-grams 和门控循环神经网络的文本分类模型. 模型采用更为简单高效的池化层替代传统的卷积层来提取关键的 $n$-grams 作为重要语义特征, 同时构建双向门控循环单元(gated recurrent unit, GRU)获取输入文本的全局依赖特征, 最后将两种特征的融合模型应用于文本分类任务. 在多个公开数据集上评估模型的质量, 包括情感分类和主题分类. 与传统模型的实验对比结果表明: 所提出的文本分类模型可有效改进文本分类的性能, 在语料库 20newsgroup 上准确率提高约 1.95%, 在语料库 Rotton Tomatoes 上准确率提高约 1.55%. 相似文献
16.
文本挖掘中中文歧义字段的自动分词是计算机科学面临的一个难题.针对汉语书写时按句连写,词间无间隙,歧义字段分词困难的特点,对典型歧义中所蕴含的语法现象进行了归纳总结,建立了供词性编码使用的词性代码库.以此为基础,通过对具有特殊语法规则的歧义字段中的字、词进行代码设定,转化为神经网络能够接受的输入向量表示形式,然后对样本进行训练,通过改进BP神经网络的自学习来掌握这些语法规则.训练结果表明:算法在歧义字段分词上达到了93.13%的训练精度和92.50%的测试精度. 相似文献
17.
针对当前大多数知识图谱嵌入方法对实体和关系的表示能力低、难以处理复杂关系的问题,提出一种基于四元数图神经网络的知识图谱嵌入方法,用于解决知识图谱的链路预测问题。该方法为了包含更丰富的关系信息,将四元数引入到知识图谱嵌入中对实体和关系建模,并考虑两者之间的共现关系。模型利用勒维图变换将知识图谱中的实体和关系转换为图网络中的节点,采用两者的共现关系构建图中的边;将四元数图神经网络(quaternion graph neural networks, QGNN)作为编码器模块,学习图节点的四元数嵌入;利用四元数空间内的哈密顿乘积构造评分函数对生成三元组进行排序。实验结果表明,所提模型能够很好地捕捉到实体与关系之间潜在的相互依赖关系,在知识图谱嵌入方面优于现有的嵌入模型。 相似文献