首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《药学学报(英文版)》2021,11(8):2306-2325
Blood–brain barrier (BBB) strictly controls matter exchange between blood and brain, and severely limits brain penetration of systemically administered drugs, resulting in ineffective drug therapy of brain diseases. However, during the onset and progression of brain diseases, BBB alterations evolve inevitably. In this review, we focus on nanoscale brain-targeting drug delivery strategies designed based on BBB evolutions and related applications in various brain diseases including Alzheimer's disease, Parkinson's disease, epilepsy, stroke, traumatic brain injury and brain tumor. The advances on optimization of small molecules for BBB crossing and non-systemic administration routes (e.g., intranasal treatment) for BBB bypassing are not included in this review.  相似文献   

2.
《药学学报(英文版)》2020,10(2):239-248
Nowadays, nanotechnology is revolutionizing the approaches to different fields from manufacture to health. Carbon nanotubes (CNTs) as promising candidates in nanomedicine have great potentials in developing novel entities for central nervous system pathologies, due to their excellent physicochemical properties and ability to interface with neurons and neuronal circuits. However, most of the studies mainly focused on the drug delivery and bioimaging applications of CNTs, while neglect their application prospects as therapeutic drugs themselves. At present, the relevant reviews are not available yet. Herein we summarized the latest advances on the biomedical and therapeutic applications of CNTs in vitro and in vivo for neurological diseases treatments as inherent therapeutic drugs. The biological mechanisms of CNTs-mediated bio-medical effects and potential toxicity of CNTs were also intensely discussed. It is expected that CNTs will exploit further neurological applications on disease therapy in the near future.  相似文献   

3.
BackgroundCisplatin (CSP) is a potent anticancer drug widely used in treating glioblastoma multiforme (GBM). However, CSP's clinical efficacy in GBM contrasted with low therapeutic ratio, toxicity, and multidrug resistance (MDR). Therefore, we have developed a system for the active targeting of cisplatin in GBM via cisplatin loaded polymeric nanoplatforms (CSP-NPs).MethodsCSP-NPs were prepared by modified double emulsion and nanoprecipitation techniques. The physiochemical characterizations of CSP-NPs were performed using zeta sizer, scanning electron microscopy (SEM), drug release kinetics, and drug content analysis. Cytotoxicity, induction of apoptosis, and cell cycle-specific activity of CSP-NPs in human GBM cell lines were evaluated by MTT assay, fluorescent microscopy, and flow cytometry. Intracellular drug uptake was gauged by fluorescent imaging and flow cytometry. The potential of CSP-NPs to inhibit MDR transporters were assessed by flow cytometry-based drug efflux assays.ResultsCSP-NPs have smooth surface properties with discrete particle size with required zeta potential, polydispersity index, drug entrapment efficiency, and drug content. CSP-NPs has demonstrated an ‘initial burst effect’ followed by sustained drug release properties. CSP-NPs imparted dose and time-dependent cytotoxicity and triggered apoptosis in human GBM cells. Interestingly, CSP-NPs significantly increased uptake, internalization, and accumulations of anticancer drugs. Moreover, CSP-NPs significantly reversed the MDR transporters (ABCB1 and ABCG2) in human GBM cells.ConclusionThe nanoparticulate system of cisplatin seems to has a promising potential for active targeting of cisplatin as an effective and specific therapeutic for human GBM, thus eliminating current chemotherapy's limitations.  相似文献   

4.
In the present study, we evaluated the pharmacokinetics (PK) of trastuzumab and sought to predict human PK based on animal studies, through the use of optical imaging and a whole-body physiologically based pharmacokinetic (WB-PBPK) modeling approach. The PK study was conducted in 24 mice, where serial blood samples were withdrawn and major organs were isolated after the last blood withdrawal. The drug concentrations in blood and major organs were measured via optical imaging. The WB-PBPK model was constructed using known physiological values including the volumes of major organs and blood/lymphatic flow. The NONMEM software (version 7.3) was used to determine tissue partition coefficients. Using the WB-PBPK model, a clinical trial simulation was performed with reference to human physiological values acquired from the literature. The simulated human PK was then compared with the actual PK observed in the previous study in which healthy male subjects received 6 mg/kg trastuzumab (Herceptin®) via intravenous route. The ratio of the simulated versus observed area under the concentration-time curve was 1.02 and that of maximal concentration was 0.72. The current study describes the potential synergistic applications of WB-PBPK and optical imaging in human PK prediction based on preclinical data obtained in early-stage drug development.  相似文献   

5.
Acute respiratory distress syndrome (ARDS) is characterized by the severe inflammation and destruction of the lung air–blood barrier, leading to irreversible and substantial respiratory function damage. Patients with coronavirus disease 2019 (COVID-19) have been encountered with a high risk of ARDS, underscoring the urgency for exploiting effective therapy. However, proper medications for ARDS are still lacking due to poor pharmacokinetics, non-specific side effects, inability to surmount pulmonary barrier, and inadequate management of heterogeneity. The increased lung permeability in the pathological environment of ARDS may contribute to nanoparticle-mediated passive targeting delivery. Nanomedicine has demonstrated unique advantages in solving the dilemma of ARDS drug therapy, which can address the shortcomings and limitations of traditional anti-inflammatory or antioxidant drug treatment. Through passive, active, or physicochemical targeting, nanocarriers can interact with lung epithelium/endothelium and inflammatory cells to reverse abnormal changes and restore homeostasis of the pulmonary environment, thereby showing good therapeutic activity and reduced toxicity. This article reviews the latest applications of nanomedicine in pre-clinical ARDS therapy, highlights the strategies for targeted treatment of lung inflammation, presents the innovative drug delivery systems, and provides inspiration for strengthening the therapeutic effect of nanomedicine-based treatment.  相似文献   

6.
Nanoparticulate drug delivery systems (Nano-DDSs) have emerged as possible solution to the obstacles of anticancer drug delivery. However, the clinical outcomes and translation are restricted by several drawbacks, such as low drug loading, premature drug leakage and carrier-related toxicity. Recently, pure drug nano-assemblies (PDNAs), fabricated by the self-assembly or co-assembly of pure drug molecules, have attracted considerable attention. Their facile and reproducible preparation technique helps to remove the bottleneck of nanomedicines including quality control, scale-up production and clinical translation. Acting as both carriers and cargos, the carrier-free PDNAs have an ultra-high or even 100% drug loading. In addition, combination therapies based on PDNAs could possibly address the most intractable problems in cancer treatment, such as tumor metastasis and drug resistance. In the present review, the latest development of PDNAs for cancer treatment is overviewed. First, PDNAs are classified according to the composition of drug molecules, and the assembly mechanisms are discussed. Furthermore, the co-delivery of PDNAs for combination therapies is summarized, with special focus on the improvement of therapeutic outcomes. Finally, future prospects and challenges of PDNAs for efficient cancer therapy are spotlighted.  相似文献   

7.
This study sought to prepare a self-microemulsion drug delivery system containing zingerone (Z-SMEDDS) to improve the low oral bioavailability of zingerone and anti-tumor effect. Z-SMEDDS was characterized by particle size, zeta potential and encapsulation efficiency, while its pharmacokinetics and anti-tumor effects were also evaluated. Z-SMEDDS had stable physicochemical properties, including average particle size of 17.29 ± 0.07 nm, the zeta potential of -22.81 ± 0.29 mV, and the encapsulation efficiency of 97.96% ± 0.02%. In vitro release studies have shown the release of zingerone released by Z-SMEDDS was significantly higher than free zingerone in different release media. The relative oral bioavailability of Z-SMEDDS was 7.63 times compared with free drug. Meanwhile, the half inhibitory concentration (IC50)of Z-SMEDDS and free zingerone was 8.45 μg/mL and 13.30 μg/mL, respectively on HepG2. This study may provide a preliminary basis for further clinical research and application of Z-SMEDDS.  相似文献   

8.
《药学学报(英文版)》2021,11(12):3857-3868
Drug-induced liver injury (DILI) is a leading reason for preclinical safety attrition and post-market drug withdrawals. Drug-induced mitochondrial toxicity has been shown to play an essential role in various forms of DILI, especially in idiosyncratic liver injury. This study examined liver injury reports submitted to the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) for drugs associated with hepatotoxicity via mitochondrial mechanisms compared with non-mitochondrial mechanisms of toxicity. The frequency of hepatotoxicity was determined at a group level and individual drug level. A reporting odds ratio (ROR) was calculated as the measure of effect. Between the two DILI groups, reports for DILI involving mitochondrial mechanisms of toxicity had a 1.43 (95% CI 1.42–1.45; P < 0.0001) times higher odds compared to drugs associated with non-mitochondrial mechanisms of toxicity. Antineoplastic, antiviral, analgesic, antibiotic, and antimycobacterial drugs were the top five drug classes with the highest ROR values. Although the top 20 drugs with the highest ROR values included drugs with both mitochondrial and non-mitochondrial injury mechanisms, the top four drugs (ROR values > 18: benzbromarone, troglitazone, isoniazid, rifampin) were associated with mitochondrial mechanisms of toxicity. The major demographic influence for DILI risk was also examined. There was a higher mean patient age among reports for drugs that were associated with mitochondrial mechanisms of toxicity [56.1 ± 18.33 (SD)] compared to non-mitochondrial mechanisms [48 ± 19.53 (SD)] (P < 0.0001), suggesting that age may play a role in susceptibility to DILI via mitochondrial mechanisms of toxicity. Univariate logistic regression analysis showed that reports of liver injury were 2.2 (odds ratio: 2.2, 95% CI 2.12–2.26) times more likely to be associated with older patient age, as compared with reports involving patients less than 65 years of age. Compared to males, female patients were 37% less likely (odds ratio: 0.63, 95% CI 0.61–0.64) to be subjects of liver injury reports for drugs associated with mitochondrial toxicity mechanisms. Given the higher proportion of severe liver injury reports among drugs associated with mitochondrial mechanisms of toxicity, it is essential to understand if a drug causes mitochondrial toxicity during preclinical drug development when drug design alternatives, more clinically relevant animal models, and better clinical biomarkers may provide a better translation of drug-induced mitochondrial toxicity risk assessment from animals to humans. Our findings from this study align with mitochondrial mechanisms of toxicity being an important cause of DILI, and this should be further investigated in real-world studies with robust designs.  相似文献   

9.
《药学学报(英文版)》2021,11(8):2172-2196
Immunotherapy is a rapidly developing area of cancer treatment due to its higher specificity and potential for greater efficacy than traditional therapies. Immune cell modulation through the administration of drugs, proteins, and cells can enhance antitumoral responses through pathways that may be otherwise inhibited in the presence of immunosuppressive tumors. Magnetic systems offer several advantages for improving the performance of immunotherapies, including increased spatiotemporal control over transport, release, and dosing of immunomodulatory drugs within the body, resulting in reduced off-target effects and improved efficacy. Compared to alternative methods for stimulating drug release such as light and pH, magnetic systems enable several distinct methods for programming immune responses. First, we discuss how magnetic hyperthermia can stimulate immune cells and trigger thermoresponsive drug release. Second, we summarize how magnetically targeted delivery of drug carriers can increase the accumulation of drugs in target sites. Third, we review how biomaterials can undergo magnetically driven structural changes to enable remote release of encapsulated drugs. Fourth, we describe the use of magnetic particles for targeted interactions with cellular receptors for promoting antitumor activity. Finally, we discuss translational considerations of these systems, such as toxicity, clinical compatibility, and future opportunities for improving cancer treatment.  相似文献   

10.
Efficient delivery of adequate active ingredients to targeted malignant cells is critical, attributing to recurrent biophysical and biochemical challenges associated with conventional pharmaceutical delivery systems. These challenges include drug leakage, low targeting capability, high systemic cytotoxicity, and poor pharmacokinetics and pharmacodynamics. Targeted delivery system is a promising development to deliver sufficient amounts of drug molecules to target cells in a controlled release pattern mode. Aptameric ligands possess unique affinity targeting capabilities which can be exploited in the design of high pay-load drug formulations to navigate active molecules to the malignant sites. This study focuses on the development of a copolymeric and multifunctional drug-loaded aptamer-conjugated poly(lactide-co-glycolic acid)–polyethylenimine (PLGA-PEI) (DPAP) delivery system, via a layer-by-layer synthesis method, using a water-in-oil-in-water double emulsion approach. The binding characteristics, targeting capability, biophysical properties, encapsulation efficiency, and drug release profile of the DPAP system were investigated under varying conditions of ionic strength, polymer composition and molecular weight (MW), and degree of PEGylation of the synthetic core. Experimental results showed increased drug release rate with increasing buffer ionic strength. DPAP particulate system obtained the highest drug release of 50% at day 9 at 1 M NaCl ionic strength. DPAP formulation, using PLGA 65:35 and PEI MW of ∼800 Da, demonstrated an encapsulation efficiency of 78.93%, and a loading capacity of 0.1605 mg bovine serum albumin per mg PLGA. DPAP (PLGA 65:35, PEI MW∼25 kDa) formulation showed a high release rate with a biphasic release profile. Experimental data depicted a lower targeting power and reduced drug release rate for the PEGylated DPAP formulations. The outcomes from the present study lay the foundation to optimize the performance of DPAP system as an effective synthetic drug carrier for targeted delivery.  相似文献   

11.
《药学学报(英文版)》2020,10(9):1730-1740
The combination of paclitaxel (PTX) and doxorubicin (DOX) has been widely used in the clinic. However, it remains unsatisfied due to the generation of severe toxicity. Previously, we have successfully synthesized a prodrug PTX-S-DOX (PSD). The prodrug displayed comparable in vitro cytotoxicity compared with the mixture of free PTX and DOX. Thus, we speculated that it could be promising to improve the anti-cancer effect and reduce adverse effects by improving the pharmacokinetics behavior of PSD and enhancing tumor accumulation. Due to the fact that copper ions (Cu2+) could coordinate with the anthracene nucleus of DOX, we speculate that the prodrug PSD could be actively loaded into liposomes by Cu2+ gradient. Hence, we designed a remote loading liposomal formulation of PSD (PSD LPs) for combination chemotherapy. The prepared PSD LPs displayed extended blood circulation, improved tumor accumulation, and more significant anti-tumor efficacy compared with PSD NPs. Furthermore, PSD LPs exhibited reduced cardiotoxicity and kidney damage compared with the physical mixture of Taxol and Doxil, indicating better safety. Therefore, this novel nano-platform provides a strategy to deliver doxorubicin with other poorly soluble antineoplastic drugs for combination therapy with high efficacy and low toxicity.  相似文献   

12.
《药学学报(英文版)》2021,11(12):3740-3755
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, which is safe at therapeutic doses but can cause severe liver injury and even liver failure after overdoses. The mouse model of APAP hepatotoxicity recapitulates closely the human pathophysiology. As a result, this clinically relevant model is frequently used to study mechanisms of drug-induced liver injury and even more so to test potential therapeutic interventions. However, the complexity of the model requires a thorough understanding of the pathophysiology to obtain valid results and mechanistic information that is translatable to the clinic. However, many studies using this model are flawed, which jeopardizes the scientific and clinical relevance. The purpose of this review is to provide a framework of the model where mechanistically sound and clinically relevant data can be obtained. The discussion provides insight into the injury mechanisms and how to study it including the critical roles of drug metabolism, mitochondrial dysfunction, necrotic cell death, autophagy and the sterile inflammatory response. In addition, the most frequently made mistakes when using this model are discussed. Thus, considering these recommendations when studying APAP hepatotoxicity will facilitate the discovery of more clinically relevant interventions.  相似文献   

13.
《药学学报(英文版)》2020,10(7):1294-1308
A great challenge in multi-targeting drug discovery is to identify drug-like lead compounds with therapeutic advantages over single target inhibitors and drug combinations. Inspired by our previous efforts in designing antitumor evodiamine derivatives, herein selective histone deacetylase 1 (HDAC1) and topoisomerase 2 (TOP2) dual inhibitors were successfully identified, which showed potent in vitro and in vivo antitumor potency. Particularly, compound 30a was orally active and possessed excellent in vivo antitumor activity in the HCT116 xenograft model (TGI = 75.2%, 150 mg/kg, p.o.) without significant toxicity, which was more potent than HDAC inhibitor vorinostat, TOP inhibitor evodiamine and their combination. Taken together, this study highlights the therapeutic advantages of evodiamine-based HDAC1/TOP2 dual inhibitors and provides valuable leads for the development of novel multi-targeting antitumor agents.  相似文献   

14.
《药学学报(英文版)》2022,12(4):2043-2056
The presence of protein corona on the surface of nanoparticles modulates their physiological interactions such as cellular association and targeting property. It has been shown that α-mangostin (αM)-loaded poly(ethylene glycol)-poly(l-lactide) (PEG-PLA) nanoparticles (NP-αM) specifically increased low density lipoprotein receptor (LDLR) expression in microglia and improved clearance of amyloid beta (Aβ) after multiple administration. However, how do the nanoparticles cross the blood?brain barrier and access microglia remain unknown. Here, we studied the brain delivery property of PEG-PLA nanoparticles under different conditions, finding that the nanoparticles exhibited higher brain transport efficiency and microglia uptake efficiency after αM loading and multiple administration. To reveal the mechanism, we performed proteomic analysis to characterize the composition of protein corona formed under various conditions, finding that both drug loading and multiple dosing affect the composition of protein corona and subsequently influence the cellular uptake of nanoparticles in b.End3 and BV-2 cells. Complement proteins, immunoglobulins, RAB5A and CD36 were found to be enriched in the corona and associated with the process of nanoparticles uptake. Collectively, we bring a mechanistic understanding about the modulator role of protein corona on targeted drug delivery, and provide theoretical basis for engineering brain or microglia-specific targeted delivery system.  相似文献   

15.
The pharmacokinetics (PK) of the anti-CD20 monoclonal antibody obinutuzumab was assessed after single intravenous dosing to cynomolgus monkeys. In addition, the pharmacokinetic-pharmacodynamic (PKPD) relationship for B-cell depletion was characterized. The PKPD model was used to estimate the B-cell repopulation during the recovery phase of chronic toxicology studies, thereby supporting the study design, in particular planning the recovery phase duration. Marked immunogenicity against obinutuzumab was observed approximately 10 days after single dose, leading to an up to ∼30-fold increase in obinutuzumab clearance in the affected monkeys. Despite this accelerated clearance, the PK could be characterized, either by disregarding the clearance in noncompartmental PK analysis or by capturing it explicitly as an additional time-dependent clearance process in compartmental modeling. This latter step was crucial to model the PKPD of B-cells as an indirect response to obinutuzumab exposure, showing that—without immune response—the limiting factor is obinutuzumab elimination with concentrations below 0.02 μg/mL required for initiation of B-cell recovery.Overall, the results demonstrate that despite a marked anti-drug antibody response in the nonclinical animal species, the PK and PKPD of obinutuzumab could be characterized successfully by appropriately addressing the immune-modulated clearance pathway in data analysis and modeling.  相似文献   

16.
Worldwide, populations face significant burdens from neurodegenerative disorders (NDDs), especially Alzheimer's and Parkinson's diseases. Although there are many proposed etiologies for neurodegenerative disorders, including genetic and environmental factors, the exact pathogenesis for these disorders is not fully understood. Most patients with NDDs are given lifelong treatment to improve their quality of life. There are myriad treatments for NDDs; however, these agents are limited by their side effects and difficulty in passing the blood–brain barrier (BBB). Furthermore, the central nervous system (CNS) active pharmaceuticals could offer symptomatic relief for the patient's condition without providing a complete cure or prevention by targeting the disease's cause. Recently, Mesoporous silica nanoparticles (MSNs) have gained interest in treating NDDs since their physicochemical properties and inherent ability to pass BBB make them possible drug carriers for several drugs for NDDs treatment. This paper provides insight into the pathogenesis and treatment of NDDs, along with the recent advances in applying MSNs as fibril scavengers. Moreover, the application of MSNs-based formulations in enhancing or sustaining drug release rate, and brain targeting via their responsive release properties, besides the neurotoxicity of MSNs, have been reviewed.  相似文献   

17.
《药学学报(英文版)》2021,11(9):2798-2818
Inflammatory bowel disease (IBD) is a chronic intestinal disease with painful clinical manifestations and high risks of cancerization. With no curative therapy for IBD at present, the development of effective therapeutics is highly advocated. Drug delivery systems have been extensively studied to transmit therapeutics to inflamed colon sites through the enhanced permeability and retention (EPR) effect caused by the inflammation. However, the drug still could not achieve effective concentration value that merely utilized on EPR effect and display better therapeutic efficacy in the inflamed region because of nontargeted drug release. Substantial researches have shown that some specific receptors and cell adhesion molecules highly expresses on the surface of colonic endothelial and/or immune cells when IBD occurs, ligand-modified drug delivery systems targeting such receptors and cell adhesion molecules can specifically deliver drug into inflamed sites and obtain great curative effects. This review introduces the overexpressed receptors and cell adhesion molecules in inflamed colon sites and retrospects the drug delivery systems functionalized by related ligands. Finally, challenges and future directions in this field are presented to advance the development of the receptor-mediated targeted drug delivery systems for the therapy of IBD.  相似文献   

18.
《药学学报(英文版)》2021,11(12):3869-3878
Disease-mediated alterations to drug disposition constitute a significant source of adverse drug reactions. Cisplatin (CDDP) elicits nephrotoxicity due to exposure in proximal tubule cells during renal secretion. Alterations to renal drug transporter expression have been discovered during nonalcoholic steatohepatitis (NASH), however, associated changes to substrate toxicity is unknown. To test this, a methionine- and choline-deficient diet-induced rat model was used to evaluate NASH-associated changes to CDDP pharmacokinetics, transporter expression, and toxicity. NASH rats administered CDDP (6 mg/kg, i.p.) displayed 20% less nephrotoxicity than healthy rats. Likewise, CDDP renal clearance decreased in NASH rats from 7.39 to 3.83 mL/min, renal secretion decreased from 6.23 to 2.80 mL/min, and renal CDDP accumulation decreased by 15%, relative to healthy rats. Renal copper transporter-1 expression decreased, and organic cation transporter-2 and ATPase copper transporting protein-7b increased slightly, reducing CDDP secretion. Hepatic CDDP accumulation increased 250% in NASH rats relative to healthy rats. Hepatic organic cation transporter-1 induction and multidrug and toxin extrusion protein-1 and multidrug resistance-associated protein-4 reduction may contribute to hepatic CDDP sequestration in NASH rats, although no drug-related toxicity was observed. These data provide a link between NASH-induced hepatic and renal transporter expression changes and CDDP renal clearance, which may alter nephrotoxicity.  相似文献   

19.
《药学学报(英文版)》2022,12(1):451-466
The combination of chemotherapy and immunotherapy motivates a potent immune system by triggering immunogenic cell death (ICD), showing great potential in inhibiting tumor growth and improving the immunosuppressive tumor microenvironment (ITM). However, the therapeutic effectiveness has been restricted by inferior drug bioavailability. Herein, we reported a universal bioresponsive doxorubicin (DOX)-based nanogel to achieve tumor-specific co-delivery of drugs. DOX-based mannose nanogels (DM NGs) was designed and choosed as an example to elucidate the mechanism of combined chemo-immunotherapy. As expected, the DM NGs exhibited prominent micellar stability, selective drug release and prolonged survival time, benefited from the enhanced tumor permeability and prolonged blood circulation. We discovered that the DOX delivered by DM NGs could induce powerful anti-tumor immune response facilitated by promoting ICD. Meanwhile, the released mannose from DM NGs was proved as a powerful and synergetic treatment for breast cancer in vitro and in vivo, via damaging the glucose metabolism in glycolysis and the tricarboxylic acid cycle. Overall, the regulation of tumor microenvironment with DOX-based nanogel is expected to be an effectual candidate strategy to overcome the current limitations of ICD-based immunotherapy, offering a paradigm for the exploitation of immunomodulatory nanomedicines.  相似文献   

20.
Skeletal muscle ion channelopathies are rare genetic diseases mainly characterized by myotonia (muscle stiffness) or periodic paralysis (muscle weakness). Here, we reviewed the available therapeutic options in non-dystrophic myotonias (NDM) and periodic paralyses (PP), which consists essentially in drug repositioning to address stiffness or weakness attacks. Empirical use followed by successful randomized clinical trials eventually led to the orphan drug designation and marketing authorization granting of mexiletine for NDM and dichlorphenamide for PP. Yet, these treatments neither consider the genetic cause of the diseases nor address the individual variability in drug response. Thus, ongoing research aims at the identification of repurposed drugs alternative to mexiletine and dichlorphenamide to allow personalization of treatment. This review highlights how drug repurposing may represent an efficient strategy in rare diseases, allowing reduction of drug development time and costs in a context in which the return on investment may be particularly challenging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号