首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A theoretical study on an aerodynamic control method for suppression of the wind-induced instabilities of a very long span bridge is presented in this paper. The control system consists of additional control flaps attached to the edges of the bridge deck. Their rotational movement, commanded via feedback control law, is used to modify the aerodynamic forces acting on the deck and provides aerodynamic forces on the flaps used to stabilize the bridge. A time domain formulation of self-excited and buffeting forces is obtained through the rational function approximation of the generalized Theodorsen function. The optimal configuration of the deck-flaps system is found with respect to the performance index based on stability robustness of the system. A control system with the rotational center of the flaps that is located on the edges of the deck was found to be the most effective. It is also shown that this control system can provide sufficient aerodynamic damping and satisfactory stability robustness of the system with a relatively small flap size for the considered range of wind speed.  相似文献   

2.
This paper presents the parameter identification of a vehicle moving on a multispan continuous bridge deck modeled as a continuous beam based on dynamic response sensitivity analysis. This technique is for the monitoring of “road-friendliness” of vehicles using the highway pavement. The moving vehicle is modeled as a single degree-of-freedom system comprising three parameters, a two degrees-of-freedom system comprising five parameters, or a four degrees-of-freedom system comprising 12 parameters. The modified beam functions are used to calculate the response of the continuous bridge. Starting with an initial guess on the unknown parameters, the identification can be realized based on least-squares method and regularization technique from measured strain, velocity, or acceleration measurement from as few as a single sensor. Simulation studies and experimental results indicate that the identified results are acceptable, and the responses reconstructed from the identified parameters agree well with the measured responses.  相似文献   

3.
A framework is presented for predicting the dynamic response of long suspension bridges to high winds and running trains. A three-dimensional finite-element model is used to represent a suspension bridge. Wind forces acting on the bridge, including both buffeting and self-excited forces, are generated in the time domain using a fast spectral representation method and measured aerodynamic coefficients and flutter derivatives. Each 4-axle vehicle in a train is modeled by a 27-degrees-of-freedom dynamic system. The dynamic interaction between the bridge and train is realized through the contact forces between the wheels and track. By applying a mode superposition technique to the bridge only and taking the measured track irregularities as known quantities, the number of degrees of freedom of the bridge-train system is significantly reduced and the coupled equations of motion are efficiently solved. The proposed formulation is then applied to a real wind-excited long suspension bridge carrying a railway inside the bridge deck of a closed cross section. The results show that the formulation presented in this paper can predict the dynamic response of the coupled bridge-train systems under fluctuating winds. The extent of interaction between the bridge and train depends on wind speed and train speed.  相似文献   

4.
An innovative approach for damage assessment of a bridge deck is proposed with the measured dynamic response of a vehicle moving on top of a structure. The simply supported bridge deck is modeled as a Euler–Bernoulli beam. The moving vehicle serves as a smart sensor and force transducer in the structural system. The damage is defined as the flexural stiffness reduction in the beam finite element. The identification algorithm is based on dynamic response sensitivity analysis, and it is realized with a regularization technique from the measured vehicle acceleration measurement. Measurement noise, road surface roughness, and model errors are included in the simulations, and the results indicate that the proposed algorithm is computationally stable and efficient, and the identified results are acceptable and not sensitive to the different parameters studied.  相似文献   

5.
A passive aerodynamic control method for suppression of the wind-induced instabilities of a very long span bridge is presented in this paper. The control system consists of additional control flaps attached to the edges of the bridge deck. Control flap rotations are governed by prestressed springs and additional cables spanned between the control flaps and an auxiliary transverse beam supported by the main cables of the bridge. The rotational movement of the flaps is used to modify the aerodynamic forces acting on the deck and provides aerodynamic forces on the flaps used to stabilize the bridge. A time-domain formulation of self-excited forces for the whole three-dimensional suspension bridge model is obtained through a rational function approximation of the generalized Theodorsen function and implemented in the FEM formulation. This paper lays the theoretical groundwork for the one that follows.  相似文献   

6.
Better understanding of the bimodal coupled bridge flutter involving fundamental vertical bending and torsional modes offers valuable insight into multimode coupled flutter, which has primarily been the major concern in the design of long span bridges. This paper presents a new framework that provides closed-form expressions for estimating modal characteristics of bimodal coupled bridge systems and for estimating the onset of flutter. Though not intended as a replacement for complex eigenvalue analysis, it provides important physical insight into the role of self-excited forces in modifying bridge dynamics and the evolution of intermodal coupling with increasing wind velocity. The accuracy and effectiveness of this framework are demonstrated through flutter analysis of a cable-stayed bridge. Based on this analysis scheme, the role of bridge structural and aerodynamic characteristics on flutter, which helps to better tailor the structural systems and deck sections for superior flutter performance, is emphasized. Accordingly, guidance on the selection of critical structural modes and the role of different force components in multimode coupled flutter are delineated. The potential significance of the consideration of intermodal coupling in predicting torsional flutter is highlighted. Finally, clear insight concerning the role of drag force to bridge flutter is presented.  相似文献   

7.
The flexibility and low damping of the long-span suspended cables in the suspension bridges make them prone to vibrations due to wind and moving loads, which affect the dynamic response of the suspended cables and the bridge deck. This paper shows the design of two control schemes to control the nonlinear vibrations in the suspended cable and the bridge deck due to a vertical load moving on the bridge deck with a constant speed. The first control scheme is an optimal state feedback controller. The second control scheme is a robust state feedback controller, whose design is based on the design of optimal controllers. The proposed controllers, whose design is based on Lyapunov theory, guarantee the asymptotic stability of the system. A vertical cable between the bridge deck and the suspended cable is used to install a hydraulic actuator able to generate the active control force on the bridge deck. The MATLAB software is used to simulate the performance of the system with the designed controllers. The simulation results indicate that the proposed controllers are capable of significantly reducing the nonlinear oscillations of the system. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a velocity feedback controller. It is found that the system with the proposed controllers can provide better performance than the system with the velocity feedback controller.  相似文献   

8.
The design of a deck-and-stringer bridge system is usually reduced to the analysis of a T-beam section, loaded by concentrated loads corresponding to an equivalent fraction of the applied truck load. This equivalent load is defined by wheel load–distribution factors, which approximate the overall behavior of the bridge superstructure. In this paper, a one-term approximation of a macroflexibility series solution including deformations for fiber-reinforced polymer (FRP) deck-and-stringer orthotropic bridge systems, is used to develop explicit expressions for symmetric and asymmetric load distribution factors. It is significant that the equations presented herein include important parameters that represent, as accurately as possible, the response characteristics of the super structure, such as the geometry and material properties of the FRP deck and stringers, bridge aspect ratio, and number and spacing of stringers. As an illustration in actual design applications, the formulation presented in this paper is used to develop an analytical method for FRP deck-and-stringer bridge systems, and the method is verified by predicting the response of an all FRP model bridge in the lab and an FRP deck on steel stringers in the field. The results of the present formulation compare well with experimental lab and field results. The simplified analysis presented in this paper can be used with sufficient accuracy for the design of composite FRP deck on stringers bridges.  相似文献   

9.
The sandwich plate system (SPS) is a relatively new bridge deck system that consists of steel face plates bonded to a rigid polyurethane core. The decks are thin, lightweight, and modular in design and can be tailored to numerous applications. This system provides an excellent alternative for the rapid construction and rehabilitation of bridge decks. With any new system, there exists some uncertainty in the design procedures as a result of the limited population for comparison. This paper presents the results of a finite-element parametric investigation of the lateral load distribution characteristics of SPS bridges. The parametric study primarily focuses on the influence of deck thickness on distribution behavior as compared to conventional reinforced concrete decks. Results from the study demonstrate that the inherent flexibility of a thin SPS deck yields larger distribution factors (up to 20%) than a typical reinforced concrete deck, but these distribution factors can still be conservatively estimated with current AASHTO LRFD methods. Additional comparisons indicate that the distribution behavior of SPS bridges can also be estimated with the equations proposed by the NCHRP 12-62 project.  相似文献   

10.
This paper presents a new frequency domain identification method for multi-input, multi-output (MIMO) systems. Based on experimentally determined frequency response function data, rational polynomial transfer function models of structural systems are identified. Known physical relationships between the measured variables are incorporated in this MIMO frequency domain identification method. The method has three stages: (1) an initial estimation model is generated using a linear least-squares method, (2) the Steiglitz–McBride method is applied to improve the initial estimation model, and (3) a maximum likelihood estimator is optimized using the Levenberg–Marquardt method. For verification of the method, two experimental studies are conducted using shaking table tests; one is the system identification of a smart base-isolated structure employing a magnetorheological (MR) damper, and the other is for an actively controlled two-story, bench-scale building employing an active mass driver. Using the developed method, system models of the experimental structures are estimated, and simulated time histories for the models are compared with measured responses. These comparisons demonstrate that the proposed method is quite effective and robust for system identification of MIMO systems. A graphic user interface program, named MFDID, has been developed to realize the suggested method.  相似文献   

11.
Fiber-reinforced polymer (FRP) composites are increasingly being used in bridge deck applications. However, there are currently only fledgling standards to design and characterize FRP deck systems. One area that should be addressed is the loading method for the FRP deck. It has been observed that the type of loading patch greatly influences the failure mode of a cellular FRP deck. The contact pressure distribution of a real truck loading is nonuniform with more concentration near the center of the contact area as a result of the conformable contact mechanics. Conversely, the conventional rectangular steel patch on a FRP deck act like a rigid flat punch and produces stress concentration near the edges. A proposed simulated tire patch has been examined for loading a cellular FRP deck with the load distribution characterized by a pressure sensitive film sensor and three-dimensional contact analysis using ANSYS. A loading profile is proposed as a design tool for analyzing FRP deck systems for strength and durability. Local top surface strains and displacements of the cellular FRP deck are found to be higher with proposed loading profile compared to those for the conventional uniformly distributed loading. Parametric studies on the deck geometry show that the global displacement criterion used for characterizing bridge deck is inadequate for a cellular FRP deck and that the local effects must be considered.  相似文献   

12.
North Carolina has recently installed a fiber-reinforced polymer (FRP) deck on steel girders at a site in Union County. The bridge was instrumented with foil strain gauges, strain transducers, and displacement transducers. The bridge was then tested with a simulated MS-22.5 design load. Experimental data confirmed full composite interaction between the girders and the FRP deck panels. The neutral axis was measured to be 383?mm above the bottom flange of the 618-mm-deep girder. It was found that composite action could be estimated within 3% using a transformed section analysis of the deck panels. For two lanes loaded, the maximum live load distribution factor was computed to be 0.75. When looking at the overall performance of the structure, the deck deflected 5?mm, with the allowable stress at least 10 times over the maximum stress measured in the material. The girder deflection of 7?mm was well within the parameters set forth by AASHTO. Simple span deflection equations were found to conservatively model the anticipated deflection of the girders when using the transformed section properties.  相似文献   

13.
The seismic response of bridges isolated by elastomeric bearings and the sliding system is investigated under two horizontal components of real earthquake ground motions. The selected bridges consist of multispan continuous deck supported on the piers and abutments. Three different mathematical models of the isolated bridge are considered for the analytical seismic response by considering and ignoring the flexibility of the deck and piers. The mathematical formulation for seismic response analysis of various mathematical models of the bridges isolated by different isolation systems is presented. The accuracy and computational efficiency of various mathematical models of isolated bridges is investigated by comparing their responses under different system parameters and earthquake ground motions. The important parameters selected are the flexibility of deck, piers, and isolation systems. There was significant difference in the computational time required for different models, but it was observed that the seismic response of the bridges obtained from different equivalent mathematical models is quite comparable even for an unsymmetrical bridge. Thus, the earthquake response of a seismically isolated bridge can be effectively obtained by modeling it as a single-degree-of-freedom system (i.e., considering the piers and deck as rigid) supported on an isolation system in two horizontal directions.  相似文献   

14.
The dynamic responses of steel deck, tension-tied, arch bridges subjected to earthquake excitations were investigated. The 620 ft (189 m) Birmingham Bridge, located in Pittsburgh, was selected as an analytical model for the study. The bridge has a single deck tension-tied arch span and is supported by two bridge piers, which in turn are supported by the pile foundations. Due to the complex configuration of the deck system, two analytical models were considered to represent the bridge deck system. Using the normal mode method, seismic responses were calculated for two bridge models and the results were compared with each other. Three orthogonal records of the El Centro 1940 earthquake were used as input for the seismic response analysis. The modal contributions were also checked in order to obtain a reasonable representation of the response and to minimize computational cost. Displacements and stresses at the panel points of the bridge are calculated and presented in graphical form.  相似文献   

15.
The structural condition assessment of highway bridges is largely based on visual observations described by subjective indices, and it is necessary to develop a methodology for an accurate and reliable condition assessment of aging and damaged structures. This paper presents a method using a systematically validated finite-element model for the quantitative condition assessment of a damaged reinforced concrete bridge deck structure, including damage location and extent, residual stiffness evaluation, and load-carrying capacity assessment. In a trial of the method in a cracked bridge beam, the residual stiffness distribution was determined by model updating, thereby locating the damage in the structure. Furthermore, the damage extent was identified through a defined damage index and the residual load-carrying capacity was estimated.  相似文献   

16.
Computation of the dynamic stress of long suspension bridges under multiloadings is essential for either the strength or fatigue assessment of the bridge. This paper presents a framework for dynamic stress analysis of long suspension bridges under wind, railway, and highway loadings. The bridge, trains, and road vehicles are respectively modeled using the finite-element method (FEM). The connections between the bridge and trains and between the bridge and road vehicles are respectively considered in terms of wheel-rail and tire-road surface contact conditions. The spatial distributions of both buffeting forces and self-excited forces over the bridge deck surface are considered. The Tsing Ma suspension bridge and the field measurement data recorded by a wind and structural health monitoring system (WASHMS) installed in the bridge are utilized as a case study to examine the proposed framework. The information on the concerned loadings measured by the WASHMS is taken as inputs for the computation simulation, and the computed stress responses are compared with the measured ones. The results show that running trains play a predominant role in bridge stress responses compared with running road vehicles and fluctuating wind loading.  相似文献   

17.
This paper presents a unique structural reliability estimation method incorporating structural parameter identification results based on the seismic response measurement. In the shaking table test, a three-bent concrete bridge model was shaken to different damage levels by a sequence of earthquake motions with increasing intensities. Structural parameters, stiffness and damping values of the bridge were identified under damaging seismic events based on the seismic response measurement. A methodology was developed to understand the importance of structural parameter identification in the reliability estimation. Along this line, a set of structural parameters were generated based on the Monte Carlo simulation. Each of them was assigned to the base bridge model. Then, every bridge model was analyzed using nonlinear time history analyses to obtain damage level at the specific locations. Last, reliability estimation was performed for bridges modeled with two sets of structural parameters. The first one was obtained by the nonlinear time history analysis with the Monte Carlo simulated parameters which is called nonupdated structural parameters. The second one was obtained by updating the first set in Bayesian sense based on the vibration-based identification results which is called updated structural parameters. In the scope of this paper, it was shown that residual reliability of the system estimated using the updated structural parameters is lower than the one estimated using the nonupdated structural parameters.  相似文献   

18.
A real-time kinematic (RTK) global positioning system (GPS) has been developed and installed on the Humen Bridge (China) for on-line monitoring of bridge deck movement, which may occur as a result of seismic activity, traffic load, and such environmental elements as temperature and wind. This paper presents the main features of the on-line GPS RTK system and its value for on-line safety monitoring.  相似文献   

19.
This paper reports on a new bridge deck slab flange-to-flange connection system for precast deck bulb tee (DBT) girders. In prefabricated bridge system made of DBT girders, the concrete deck slab is cast with the prestressed girder in a controlled environment at the fabrication facility and then shipped to the bridge site. This system requires that the individual prefabricated girders be connected through their flanges to make it continuous for live load distribution. The objectives of this study are to develop an intermittent bolted connection for DBT bridge girders and to provide experimental data on the ultimate strength of the connection system. This includes identifying the crack formation and propagation, failure mode, and ultimate load carrying capacity. In this study, three different types of intermittent bolted connection were developed. Four actual-size bridge panels were fabricated and then tested to collapse. The effects of the size and the level of the fixity of the connecting steel plates, as well as the location of the wheel load were examined. The developed joint was considered successful if the experimental wheel load satisfied the requirements specified in North American bridge codes. It was concluded that location of the wheel load at the deck slab joint affected the ultimate load carrying capacity of the connections developed. Failure of the joint was observed to be due to either excessive deformation and yielding of the connecting steel plates or debonding of the embedded studs in concrete.  相似文献   

20.
The system identification and vibration control of a cable-stayed bridge are considered difficult to achieve due to the bridge’s structural complexity and system uncertainties. In this paper, based on the concept of decentralized information structures, a decentralized, nonparametric identification and control algorithm with neural networks is proposed for the purpose of suppressing the vibration of a documented six-cable-stayed bridge model induced by earthquake excitations. The control strategy proposed here uses the stay cables as active tendons to provide control forces through appropriate actuators. Each individual actuator is controlled by a decentralized neurocontroller that only uses local information. The feature of decentralized control simplifies the implementation of the control algorithms and makes decentralized control easy to practice and cost effective. The effectiveness of the decentralized identification and control algorithm based on neural networks is evaluated through numerical simulations. And the adaptability of the decentralized neurocontrollers for different kinds of earthquake excitations and for a damaged cable-stayed bridge model is demonstrated via numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号