首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Recently, a linear Model Predictive Control (MPC) suitable for closed-loop re-identification was proposed, which solves the potential conflict between the persistent excitation of the system (necessary to perform a suitable identification) and the control, and guarantees recursive feasibility and attractivity of an invariant region of the closed-loop. This approach, however, needs to be extended to account for a proper robustness to moderate-to-severe model mismatches, given that re-identifications are necessary when the system is not close to the operating point where the current linear model was identified. In this work, new results on robustness are presented, and an exhaustive application of the new MPC suitable for closed-loop re-identification to a nonlinear polymerization reactor simulator is made to explore the difficulties arising from a real life identification. Furthermore, several closed-loop re-identification are performed in order to clearly show that the proposed controller provides uncorrelated input–output data sets, which together with the guaranteed stability, constitute the main controller benefit.  相似文献   

2.
苏佰丽  李少远 《自动化学报》2008,34(9):1141-1147
针对一类具有不确定性和变量约束的非线性切换系统, 提出了一种基于Lyapunov函数的预测控制方法, 其中状态约束分为两种情况: 1)要求状态变量在所有时刻都满足约束(称为硬约束); 2)允许状态在某些时刻超出约束(称为软约束). 主要思想是: 对切换系统的每一个子系统, 在输入和状态均受约束的情况下, 设计基于Lyapunov函数的有界控制器和预测控制器, 在两者之间适当切换, 得到初始稳定区域的描述并使得子闭环系统保持稳定. 对整个切换系统, 设计适当的切换律以保证: 1)在切换时刻, 闭环系统的状态处在切入系统的稳定区域内; 2)切入模块的Lyapunov函数是非增的, 从而可保证稳定性. 在状态变量的约束是软约束时, 对每一子模块首先设计一个控制策略, 尽快将状态控制到初始稳定区域, 然后再利用稳定区域内的控制律使系统稳定.  相似文献   

3.
基于Vinnicombe距离的迭代辨识与控制设计   总被引:1,自引:0,他引:1  
宗群  窦立谦  刘文静 《自动化学报》2008,34(11):1431-1436
迭代辨识与控制设计的主要问题在于保证控制设计的稳定性和闭环性能的不断改善. 针对该问题, 本文提出一种基于Vinnicombe距离的迭代辨识与控制设计方法. 每次迭代辨识使用上次设计的控制器, 通过闭环辨识得到包含真实系统的不确定模型集合, 设计镇定这个集合的控制器; 同时提出迭代辨识过程闭环性能改善条件, 以及控制器的设计方法. 仿真结果显示了该方法的有效性.  相似文献   

4.
针对一类约束多传感器线性故障系统,提出了一种基于鲁棒预测控制策略的容错控制方案.首先为多传感器线性系统设计了观测器,然后离线设计不变集列,使得时变的状态估计误差存在于相应的不变集列中,利用不变集的理论提出了一种新的故障检测的方法,最后基于鲁棒预测控制策略为故障系统设计了容错控制器,给出了闭环系统鲁棒稳定性的证明.仿真结果证明了方法的可行性。  相似文献   

5.
In this paper, a novel robust-constrained control methodology for discrete-time linear parameter-varying (DT-LPV) systems is proposed based on a synergetic control theory (SCT) approach. It is shown that in DT-LPV systems without uncertainty, and for any unmeasured bounded additive disturbance, the proposed controller accomplishes the goal of stabilising the system by asymptotically driving the error of the controlled variable to a bounded set containing the origin and then maintaining it there. Moreover, given an uncertain DT-LPV system jointly subject to unmeasured and constrained additive disturbances, and constraints in states, input commands and reference signals (set points), then invariant set theory is used to find an appropriate polyhedral robust invariant region in which the proposed control framework is guaranteed to robustly stabilise the closed-loop system. Furthermore, this is achieved even for the case of varying non-zero control set points in such uncertain DT-LPV systems. The controller is characterised to have a simple structure leading to an easy implementation, and a non-complex design process. The effectiveness of the proposed method and the implications of the controller design on feasibility and closed-loop performance are demonstrated through application examples on the temperature control on a continuous-stirred tank reactor plant, on the control of a real-coupled DC motor plant, and on an open-loop unstable system example.  相似文献   

6.
基于多控制器的直接自适应控制   总被引:1,自引:0,他引:1  
游乙龙  李昇平 《控制工程》2008,15(3):291-294
为解决多模型自适应控制可能造成的模型失配不稳定性问题,利用非伪控制理论,提出了一种直接辨识控制器的方法。由一步超前控制器构造控制器集,通过一个具有一定属性的恰当选择的代价函数,只要控制器集中至少存在一个镇定的控制器,即自适应控制问题是可行的,滞后切换逻辑总能快速将镇定控制器切换到控制回路中,保证闭环系统稳定和输出误差渐近趋于零。给出了闭环系统在L2e意义下输入输出稳定性结论,并给出仿真实例验证其有效性。  相似文献   

7.
In this paper an iterative scheme for identification and control is discussed. During the identification step a plant model which is suitable for the subsequent controller design step is obtained by estimation of the (dual) Youla-parameter from measurements of the input and output of the plant. Using the identified plant model, the frequency response of the ideal controller which perfectly realizes the desired closed-loop response for set-point changes is computed. This controller, in general, may not be realizable or is of high-order. A realizable, low-order controller is then calculated using frequency-weighted approximation. These steps are repeated until the performance of the closed-loop system is satisfactory or cannot be improved further. The proposed scheme is applied successfully to the identification and control of a continuous neutralization reactor.  相似文献   

8.
An iterative identification and control design method based on υ-gap is given to ensure the stability of closed-loop system and control performance improvement. The whole iterative procedure includes three parts: the optimal excitation signals design, the uncertainty model set identification and the stable controller design. Firstly the worst case υ-gap is used as the criterion of the optimal excitation signals design, and the design is performed via the power spectrum optimization. And then, an uncertainty model set is attained by system identification on the basis of the measure signals. The controller is designed to ensure the stability of closed-loop system and the closed-loop performance improvement. Simulation result shows that the proposed method has good convergence and closed-loop control performance. Supported by the National Natural Science Foundation of China (Grant Nos. 60574055, 60874073), the Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No. 20050056037), and the Tianjin Science and Technology Keystone Project (Grant No. 08ZCKFJC27900)  相似文献   

9.
Feedforward control can significantly enhance the performance of motion systems through compensation of known disturbances. This paper aims to develop a new procedure to tune a feedforward controller based on measured data obtained in finite time tasks. Hereto, a suitable feedforward parametrization is introduced that provides good extrapolation properties for a class of reference signals. Next, connections with closed-loop system identification are established. In particular, instrumental variables, which have been proven very useful in closed-loop system identification, are selected to tune the feedforward controller. These instrumental variables closely resemble traditional engineering tuning practice. In contrast to pre-existing approaches, the feedforward controller can be updated after each task, irrespective of noise acting on the system. Experimental results confirm the practical relevance of the proposed method.  相似文献   

10.
基于遗传算法的非线性模型预测控制方法   总被引:14,自引:0,他引:14       下载免费PDF全文
杨建军  刘民  吴澄 《控制与决策》2003,18(2):141-144
介绍了非线性模型预调控制算法结构,提出了基于遗传算法的非线性模型预测控制方法,将遗传算法作为优化技术用于受限非线性模型预测控制器的设计。算法采用双模控制策略,将保证预测控制算法稳定性的终点等式约束转化为终点不等式约束,以利于遗传算法的实施。基于不变集理论,给出了非线性模型预测控制算法的稳定性定理。仿真结果表明了所提出控制算法的可行性和有效性。  相似文献   

11.
In this paper, an observer-based event-triggered distributed model predictive control method is proposed for a class of nonlinear interconnected systems with bounded disturbances, considering unmeasurable states. First of all, the state observer is constructed. It is proved that the observation error is bounded. Second, distributed model predictive controller is designed by using observed value. Meanwhile, the event-triggered mechanism is set by using the error between the actual output and the predicted output. The setting of event-triggered mechanism not only ensures the error between the actual output and the predicted output within a certain range, but also reduces the calculation amounts of solving the optimization problem. The states of each subsystem enter the terminal invariant set by distributed model predictive control, and then are stabilized in the invariant set under the action of output feedback control law. In addition, sufficient conditions are given to ensure the feasibility of the algorithm and the stability of the closed-loop system. Finally, the numerical example is given, and the simulation results verify the effectiveness of the proposed algorithm.  相似文献   

12.
Output feedback control of nonlinear systems subject to sensor data losses   总被引:2,自引:0,他引:2  
In this work, we focus on output feedback control of nonlinear systems subject to sensor data losses. We initially construct an output feedback controller based on a combination of a Lyapunov-based controller with a high-gain observer. We then study the stability and robustness properties of the closed-loop system in the presence of sensor data losses for both the continuous and sampled-data systems. We state a set of sufficient conditions under which the closed-loop system is guaranteed to be practically stable. The theoretical results are demonstrated using a chemical process example.  相似文献   

13.
In this paper, a multisensor fusion fault tolerant control system with fault detection and identification via set separation is presented. The fault detection and identification unit verifies that for each sensor–estimator combination, the estimation tracking errors lie inside pre-computed sets and discards faulty sensors when their associated estimation tracking errors leave the sets. An active fault tolerant controller is obtained, where the remaining healthy estimates are combined using a technique based on the optimal fusion criterion in the linear minimum-variance sense. The fused estimates are then used to implement a state feedback tracking controller. We ensure closed-loop stability and performance under the occurrence of abrupt sensor faults. Experimental validation, illustrating the multisensor fusion fault tolerant control strategy is included.  相似文献   

14.
多变量模型的复杂结构、强耦合性、被控对象参数的未知、慢时变等问题要求控制器必须具有良好的自适应性,针对以上问题提出了一种基于改进的广义最小方差闭环自适应解耦控制器实现更好的自适应,其由参数可调的控制器和自适应控制律组成,此控制器通过将闭环系统方程的传递函数矩阵等于期望的对角矩阵来实现解耦,同时改进的辨识算法可进行在线辨识控制器的参数实现同步自适应解耦。通过以CARMA为多变量控制模型,采用该方法进行仿真有效的解决了多变量之间的耦合性。结果表明该方法能够适应相应的变化,跟踪性能较好,且具备良好的解耦能力,进而保证了闭环系统的稳定性,从而验证了此方法能够效提高控制系统的稳定性和鲁棒性。  相似文献   

15.
针对具有结构不确定性的时滞系统,设计了闭环鲁棒预测控制算法.该控制算法基于控制不变集方法,通过采用双模控制和闭环控制策略,增加了控制设计的自由度,进而扩大了系统的初始可行域并能获得较优的控制性能.仿真结果验证了该方法的有效性.  相似文献   

16.
This paper presents a new model-free technique to design fixed-structure controllers for linear unknown systems. In the current control design approaches, measured data are used to first identify a model of the plant, then a controller is designed based on the identified model. Due to errors associated with the identification process, degradation in the controller performance is expected. Hence, we use the measured data to directly design the controller without the need for model identification. Our objective here is to design measurement-based controllers for stable and unstable systems, even when the closed-loop architecture is unknown. This proposed method can be very useful for many industrial applications. The proposed control methodology is a reference model design approach which aims at finding suitable parameter values of a fixed-order controller so that the closed-loop frequency response matches a desired frequency response. This reference model design problem is formulated as a nonlinear programming problem using the concept of bounded error, which can then be solved to find suitable values of the controller parameters. In addition to the well-known advantages of data-based control methods, the main features of our proposed approach are: (1) the error is guaranteed to be bounded, (2) it enables us to avoid issues related to the use of minimization methods, (3) it can be applied to stable and unstable plants and does not require any knowledge about the closed-loop architecture, and (4) the controller structure can be selected a priori, which means that low-order controllers can be designed. The proposed technique is experimentally validated through a real position control problem of a DC servomotor, where the results demonstrate the efficacy of the proposed method.  相似文献   

17.
The objective of this paper is to present a measurement-based control-design approach for single-input single-output linear systems with guaranteed bounded error. A wide range of control-design approaches available in the literature are based on parametric models. These models can be obtained analytically using physical laws or via system identification using a set of measured data. However, due to the complex properties of real systems, an identified model is only an approximation of the plant based on simplifying assumptions. Thus, the controller designed based on a simplified model can seriously degrade the closed-loop performance of the system. In this paper, an alternative approach is proposed to develop fixed-order controllers based on measured data without the need for model identification. The proposed control technique is based on computing a suitable set of fixed-order controller parameters for which the closed-loop frequency response fits a desired frequency response that meets the desired closed-loop performance specifications. The control-design problem is formulated as a nonlinear programming problem using the concept of bounded error. The main advantages of our proposed approach are: (1) it guarantees that the error between the computed and the desired frequency responses is less than a small value; (2) the difficulty of finding the globally optimal solution in the error minimisation problem is avoided; (3) the controller can be designed without the use of any analytical model to avoid errors associated with the identification process; and (4) low-order controllers can be designed by selecting a fixed low-order controller structure. To experimentally validate and illustrate the efficacy of the proposed approach, proportional-integral measurement-based controllers are designed for a DC (direct current) servomotor.  相似文献   

18.
In this work, we study distributed model predictive control (DMPC) of nonlinear systems subject to communication disruptions - communication channel noise and data losses - between distributed controllers. Specifically, we focus on a DMPC architecture in which one of the distributed controllers is responsible for ensuring closed-loop stability while the rest of the distributed controllers communicate and cooperate with the stabilizing controller to further improve the closed-loop performance. To handle communication disruptions, feasibility problems are incorporated in the DMPC architecture to determine if the data transmitted through the communication channel is reliable or not. Based on the results of the feasibility problems, the transmitted information is accepted or rejected by the stabilizing MPC. In order to ensure the stability of the closed-loop system under communication disruptions, each model predictive controller utilizes a stability constraint which is based on a suitable Lyapunov-based controller. The theoretical results are demonstrated through a nonlinear chemical process example.  相似文献   

19.
In this work, we consider nonlinear systems with input constraints and uncertain variables, and develop a robust hybrid predictive control structure that provides a safety net for the implementation of any model predictive control (MPC) formulation, designed with or without taking uncertainty into account. The key idea is to use a Lyapunov-based bounded robust controller, for which an explicit characterization of the region of robust closed-loop stability can be obtained, to provide a stability region within which any available MPC formulation can be implemented. This is achieved by devising a set of switching laws that orchestrate switching between MPC and the bounded robust controller in a way that exploits the performance of MPC whenever possible, while using the bounded controller as a fall-back controller that can be switched in at any time to maintain robust closed-loop stability in the event that the predictive controller fails to yield a control move (due, e.g., to computational difficulties in the optimization or infeasibility) or leads to instability (due, e.g., to inappropriate penalties and/or horizon length in the objective function). The implementation and efficacy of the robust hybrid predictive control structure are demonstrated through simulations using a chemical process example.  相似文献   

20.
In this work, a hybrid control scheme, uniting bounded control with model predictive control (MPC), is proposed for the stabilization of linear time-invariant systems with input constraints. The scheme is predicated upon the idea of switching between a model predictive controller, that minimizes a given performance objective subject to constraints, and a bounded controller, for which the region of constrained closed-loop stability is explicitly characterized. Switching laws, implemented by a logic-based supervisor that constantly monitors the plant, are derived to orchestrate the transition between the two controllers in a way that safeguards against any possible instability or infeasibility under MPC, reconciles the stability and optimality properties of both controllers, and guarantees asymptotic closed-loop stability for all initial conditions within the stability region of the bounded controller. The hybrid control scheme is shown to provide, irrespective of the chosen MPC formulation, a safety net for the practical implementation of MPC, for open-loop unstable plants, by providing a priori knowledge, through off-line computations, of a large set of initial conditions for which closed-loop stability is guaranteed. The implementation of the proposed approach is illustrated, through numerical simulations, for an exponentially unstable linear system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号