首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Stationary shoulder friction stir welding (SSFSW) butt welded joints were fabricated successfully for AA6061-T6 sheets with 5.0 mm thickness. The welding experiments were performed using 750–1500 rpm tool rotation speeds and 100–300 mm/min welding speeds. The effects of welding parameters on microstructure and mechanical properties for the obtained welds were discussed and analyzed in detail. It is verified that the defect-free SSFSW welds with fine and smooth surface were obtained for all the selected welding parameters, and the weld transverse sections are obviously different from that of conventional FSW joint. The SSFSW nugget zone (NZ) has “bowl-like” shapes with fairly narrow thermal mechanically affected zone (TMAZ) and heat affected zone (HAZ) and the microstructures of weld region are rather symmetrical and homogeneous. The 750–1500 rpm rotation speeds apparently increase the widths of NZ, TMAZ and HAZ, while the influences of 100–300 mm/min welding speeds on their widths are weak. The softening regions with the average hardness equivalent 60% of the base metal are produced on both advancing side and retreating side. The tensile properties of AA6061-T6 SSFSW joints are almost unaffected by the 750–1500 rpm rotation speeds for given 100 mm/min, while the changing of welding speed from 100–300 mm/min for given 1500 rpm obviously increased the tensile strength of the joint and the maximum value for welding parameter 1500 rpm and 300 mm/min reached 77.3% of the base metal strength. The tensile fracture sites always locate in HAZ either on the advancing side or retreating side of the joints.  相似文献   

2.
Friction stir welding (FSW) and stationary shoulder friction stir welding (SSFSW) were carried out for the butt joining of dissimilar AA2024-T3 and AA7050-T7651 aluminium alloys with thicknesses of 2 mm. A comparison between the two processes was performed by varying the welding speed while keeping the rotational speed constant. Through the analysis of the force and torque produced during welding and a simple analytical model, it was possible to show that in SSFSW there is more effective coupling with the tool and the heat produced is more efficiently distributed. This process decreases both the welding area and the diffusion at the interface of the two alloys compared with FSW. The minimum microhardness occurred at the advancing side (AS) at the interface between the thermo-mechanically affected zone (TMAZ) and the stir zone (SZ) in both processes, although the decrease was more gradual in SSFSW. This interface is also where all specimens failed for both welding technologies. An increase in tensile strength was measured in SSFSW compared with standard FSW. Furthermore, it was possible to establish the mechanical performance of the material in the fracture zone using digital image correlation.  相似文献   

3.
In the present study, the joining of interstitial free steel and commercial pure aluminium was carried out by friction stir welding (FSW) technique using tool rotational speeds of 600, 900, 1200 rpm and traverse speed of 100 mm/min. The microstructure and micro-hardness of the weld interface have been investigated. Optical microscopy was used to characterize the microstructures of different regions of friction stir welding joints. The scanning electron microscopy-back scattered electron (SEM-BSE) images show the existence of the different reaction layers in the welded zone. The Al3Fe intermetallic compound has been observed in the weld interface and their thickness increase with the increase in tool rotational speed. Tensile strength was also evaluated and maximum tensile strength of ∼123.2 MPa along with ∼4.5% elongation at fracture of the joint have been obtained when processed at 600 rpm tool rotational speed.  相似文献   

4.
5 mm-Thick dissimilar AA2024-T3 and AA7075-T6 aluminum alloy sheets were friction stir lap welded in two joint combinations, i.e., (top) 2024/7075 (bottom) and 7075/2024. The influences of process conditions (welding speed and joint combination) on defects (hook and voids) features and mechanical properties of joints were investigated in detail. It was found that the hook deflects largely upwards into the stir zone (SZ) at lower welding speeds (50, 150 mm/min) in both combinations. The process conditions significantly affect the hook geometry which in return affects the lap shear strength. In all 2024/7075 joints, voids appear and the joints fracture from the tip of hook on AS along the SZ/TMAZ (thermomechanically affected zone) interface in lap shear test (tensile fracture mode). In 7075/2024 joints, the hook on RS horizontally extends a large distance into the bottom stir zone at higher welding speeds (225, 300 mm/min). The joints fracture in three modes: shear fracture along the lap interfaces, tensile fracture and the mix fracture of both. In both joint combinations, the lap shear strength generally increases with the increase of welding speed. 7075/2024 Joints show higher failure load than 2024/7075 joints at lower welding speeds while the opposite result appears at higher welding speeds.  相似文献   

5.
The microstructures and mechanical properties of friction stir welded Inconel 600 and SS 400 lap joints were evaluated in this study. Friction stir welding was carried out at a tool rotation speed of 200 rpm and a welding speed of 100 mm/min. Application of friction stir welding was notably effective in reducing the grain size of the stir zone, as a result, the average grain size of Inconel 600 was reduced from 20 μm in the base material to 8.5 μm in the stir zone. The joint interface between Inconel 600 and SS 400 was soundly welded without voids and cracks, and MC carbides with a size of 50 nm were partially formed in the region of the lap joint interface in Inconel 600. In addition, a hook from SS 400 was formed on the advancing side of the Inconel 600 alloy, which directly affected an increase in the peel strength of the weld. In this study, we systematically discussed the effect of friction stir welding on the evolution of the microstructures and mechanical properties of friction stir lap jointed Inconel 600 and SS 400.  相似文献   

6.
The increasing use of aluminium alloys in transportation industry, such as railways, shipbuilding and aeronautics, promotes the development of more efficient and reliable welding processes. Friction stir welding (FSW) is a prominent solid-state joining technology that arose as a possible reliable welding solution. Optimized process parameters are not regularly used in previous studies found in the literature, in particular T-joints, which difficult the process industrial application. This study is focused on the optimization of friction stir welded T-joints using the Taguchi method. Mechanical tests of 27 different welded joints were carried out, and results were analysed using ANOVA, mean effect and response surface methodology (RSM). The tool rotational speed was verified to be the most influent factor in the joint mechanical properties, and is strongly dependent on the shoulder/probe diameters ratio. It was also shown that using 1000 rpm, 3.90 mm of probe depth and shoulder/probe diameters ratio of 2.5 (shoulder diameter of 15 mm) it may be achieved improved joint strength. For the optimized parameters it was verified that the welding speed does not have a significant influence. Equations to predict the joints mechanical properties were also derived through multiple regression.  相似文献   

7.
In this paper, 5-mm-thick 6082-T6 aluminum alloy was joined by means of self-support friction stir welding (SSFSW). Here we report the grain structure and second phase particles in various regions including the welding nugget zone (WNZ), thermo-mechanically affected zone (TMAZ), and heat affected zone (HAZ). In the upper part of the joint, microhardness in the TMAZ in proximity of the UWNZ was the highest (average 89.4 HV) due to the severe plastic deformation. The similar result was also found in the lower part of the SSFSW joint. The microstructural development in each region was a strong function of the local thermo-mechanical cycle experienced during welding. Some coarse equiaxed grains which were produced in incomplete dynamic recrystallization process and dissolution of some precipitates have been observed in TMAZ. The HAZ retained the same grain structure as the base material, however, the grain size decreased with increasing distance of the weld centerline.  相似文献   

8.
In the present study, 7.8 mm thick AA2219 rolled plates were successfully filling friction stir welded (FFSW) without keyhole using a semi-consumable tool. The influences of the bit’s geometric parameters and the plunge speed on the joint’s mechanical properties were investigated. Microstructure of the joint, especially at the interface, was observed. The results revealed that the AA7075 bit’s employment was able to decrease the shedding bit material effectively. During tensile tests, the maximum ultimate tensile strength (UTS) and elongation of the joint were 179.6 MPa and 13.7%, equivalent to 96.6% and 99% of the original defect-free friction stir welding (FSW) joint, respectively. The defect-free FFSW joints were produced at lower plunge speeds, and the fracture locations were at the softened region within the heat affected zone (HAZ) adjacent to the thermo-mechanically affected zone (TMAZ) on the retreating side. With increasing the plunge speed, the fracture location was more mainly dependent on the interface strength instead of the hardness distribution.  相似文献   

9.
The majority of this research has concentrated on developing the self-support friction stir welding(SSFSW) tool which consists of a big concave upper shoulder and a small convex lower shoulder, and procedures for making reliable welds in aluminum hollow extrusion. The 5-mm-thick 6082-T6 aluminum alloy was self-support friction stir welded at a constant tool rotation speed of 800 r/min. The effect of welding speed on microstructure and mechanical properties was investigated. The results of transverse tensile test indicated that the tensile strength of joints increased and the elongation decreased with increasing welding speed. The whole values of microhardness of SSFSW joints increased with increasing welding speed from 10 to 200 mm/min. The defectfree joints were obtained at lower welding speeds and the tensile fracture was located at the heat-affected zone(HAZ) adjacent to the thermo-mechanically affected zone(TMAZ) on the advancing side. The investigation of the flow pattern of the softened metal around the SSFSW tool revealed that the flow pattern of the softened metal was driven by two shoulders and the stir pin. The failure of specimens in tension presented the ductile fracture mode.  相似文献   

10.
The relatively new welding process friction stir welding (FSW) was applied in this research work to join 6 mm thick dissimilar aluminum alloys AA5083-H111 and AA6351-T6. The effect of tool rotational speed and pin profile on the microstructure and tensile strength of the joints were studied. Dissimilar joints were made using three different tool rotational speeds of 600 rpm, 950 rpm and 1300 rpm and five different tool pin profiles of straight square (SS), straight hexagon (SH), straight octagon (SO), tapered square (TS), and tapered octagon (TO). Three different regions namely unmixed region, mechanically mixed region and mixed flow region were observed in the weld zone. The tool rotational speed and pin profile considerably influenced the microstructure and tensile strength of the joints. The joint which was fabricated using tool rotational speed of 950 rpm and straight square pin profile yielded highest tensile strength of 273 MPa. The two process parameters affected the joint strength due to variations in material flow behavior, loss of cold work in the HAZ of AA5083 side, dissolution and over aging of precipitates of AA6351 side and formation of macroscopic defects in the weld zone.  相似文献   

11.
7085-T7452 plates with a thickness of 12 mm were welded by conventional single side and bobbin tool friction stir welding (SS-FSW and BB-FSW, respectively) at different welding parameters. The temperature distribution, microstructure evolution and mechanical properties of joints along the thickness direction were investigated, and digital image correlation (DIC) was utilized to evaluate quantitatively the deformation of different zones during tensile tests. The results indicated that heat-affected zone (HAZ), the local softening region, was responsible for the early plastic deformation and also the fracture location for SS-FSW samples, while a rapid fracture was observed in weld nugget zone (WNZ) before yield behavior for all BB-FSW specimens. The ultimate tensile strength (UTS) of SS-FSW joints presented the highest value of 410 MPa, 82% of the base material, at a rotational speed of 300 rpm and welding speed of 60 mm/min, much higher than that of BB-FSW joints, with a joint efficiency of only 47%. This should be attributed to the Lazy S defect produced by a larger extent of heat input during the BB-FSW process. The whole joint exhibited a much higher elongation than the slices. Scanning electron microscopic (SEM) analysis of the fracture morphologies showed that joints failed through ductile fracture for SS-FSW and brittle fracture for BB-FSW.  相似文献   

12.
In this work, a third generation Al-Li alloy has been successfully spot welded with probeless friction stir spot welding (P-FSSW), which is a variant of conventional friction stir welding. The Box-Behnken experimental design in response surface methodology (RSM) was applied to optimize the P-FSSW parameters to attain maximum tensile/shear strength of the spot joints. Results show that an optimal failure load of 7.83 kN was obtained under a dwell time of 7.2 s, rotation speed of 950 rpm and plunge rate of 30 mm/min. Sufficient dwell time is essential for heat conduction, material flow and expansion of the stir zone to form a sound joint. Two fracture modes were observed, which were significantly affected by hook defect. In addition to mechanical testing, electron backscattering diffraction (EBSD) and differential scanning calorimetry (DSC) were used for microstructure evolution and property analysis. The precipitation of GP zone and Al3Li as well as the ultrafine grains were responsible for the high microhardness in the stir zone.  相似文献   

13.
The aim of the present work is to optimise the welding parameters for friction stir spot welded non-heat-treatable AA3003-H12 aluminium alloy sheets using a Taguchi orthogonal array. The welding parameters, such as the tool rotational speed, tool plunge depth and dwell time, were determined according to the Taguchi orthogonal table L9 using a randomised approach. The optimum welding parameters for the peak tensile shear load of the joints were predicted, and the individual importance of each parameter on the tensile shear load of the friction stir spot weld was evaluated by examining the signal-to-noise ratio and analysis of variance (ANOVA) results. The optimum levels of the plunge depth, dwell time and tool rotational speed were found to be 4.8 mm, 2 s and 1500 rpm, respectively. The ANOVA results indicated that the tool plunge depth has the higher statistical effect with 69.26% on the tensile shear load, followed by the dwell time and rotational speed. The tensile shear load of the friction stir spot welding (FSSW) joints increased with increasing plunge depth. Additionally, examination of the weld cross-sections, microhardness tests and fracture characterisation of the selected friction spot welded joints were conducted to understand the better performance of the joints. All the fractures of the joints during tensile testing occurred at stir zone (SZ), where the bonded section was minimum. The tensile shear load and tensile deformation of the FSSW joints increased linearly with increasing the bonded size. The finer grain size in the SZ led to the higher hardness, which resulted in higher fracture strength. When the tensile shear load of the joints increased approximately 3-fold, the failure energy absorption of the joints increased approximately 15-fold.  相似文献   

14.
Friction stir spot welding (FSSW) is a newly-developed solid state joining technology. In this study, two types of FSSW, normal FSSW and walking FSSW, are applied to join the 5052-H112 aluminum alloy sheets with 1 mm thickness and then the effect of the rotational speed and dwell time on microstructure and mechanical properties is discussed. The lower sheet material underneath the hook didn’t flow into the upper sheet due to the concave surface in the shoulder and groove in the anvil. The hardness profile of the welds exhibited a W-shaped appearance and the minimum hardness was measured in the HAZ. The results of tensile/shear tests and cross-tension tests indicate that the joint strength decreases with increasing rotational speed, while it’s not affected significantly by dwell time. At the rotational speed of 1541 rpm, the tensile/shear strength and cross-tension strength reached the maximum of 2847.7 N and 902.1 N corresponding to the dwell time of 5 s and 15 s. Two different fracture modes were observed under both tensile/shear and cross-tension loadings: shear fracture and tensile/shear mixed fracture under tensile/shear loadings, and nugget debonding and pull-out under cross-tension loadings. The performance of the welds plays a predominant role in determining the type of fracture modes. In addition, the adoption of walking FSSW brings unremarkable improvements in weld strength.  相似文献   

15.
H.J. Zhang  H.J. Liu  L. Yu 《Materials & Design》2011,32(8-9):4402-4407
A 2219-T6 aluminum alloy was underwater friction stir welded at a fixed welding speed and various rotation speeds in order to illuminate the influence of rotation speed on the performance of underwater joints. With increasing rotation speed, the hardness of the stir zone (SZ) gradually increases due to the increase in dislocation density. The tensile strength first increases from 600 to 800 rpm and then reaches a plateau in a wide rotation speed range. After that a remarkable decrease in tensile strength occurs owing to the formation of void defect. The joint welded at lower rotation speed tends to be fractured in the SZ. At higher rotation speeds, the hardness increase in the SZ makes the fracture locations of defect-free joints move to the thermal-mechanically affected zone (TMAZ) or heat affected zone (HAZ).  相似文献   

16.
In this work,refill friction stir spot welding(RFSSW) was used to weld 2 mm-thick 5083-O alloy.The Box–Behnken experimental design was used to investigate the effect of welding parameters on the joint lap shear property.Results showed that a surface indentation of 0.3 mm effectively eliminated the welding defects.Microhardness of the stir zone(SZ) was higher than that of the base material(BM) and the hardness decreased with increasing the heat input during welding.The optimum failure load of 7.72 k N was obtained when using rotating speed of 2300 rpm,plunge depth of 2.4 mm and refilling time of 3.5 s.Three fracture modes were obtained during the lap shear test and all were affected by the hook defect.  相似文献   

17.
The external non-rotational shoulder assisted friction stir welding (NRSA-FSW) was applied to weld high strength aluminum alloy 2219-T6 successfully, and effects of the tool rotation speed on microstructures and mechanical properties were investigated in detail. Defect-free joints were obtained in a wide range of tool rotation speeds from 600 rpm to 900 rpm, but cavity defects appeared on the advancing side when the tool rotation speed increased to 1000 rpm. The microstructural deformation and heat generation were dominated by the rotating tool pin and sub-size concave shoulder, while the non-rotational shoulder helped to improve the weld formation. Microstructures and Vickers hardness distributions showed that the NRSA-FSW is beneficial to improving the asymmetry and inhomogeneity, especially in the weld nugget zone (WNZ). At the tool rotation speed of 800 rpm, both the tensile strength and the elongation reached the maximum, and the maximum tensile strength was up to 69.0% of the base material. All defect-free joints were fractured at the weakest region with minimum Vickers hardness in the WNZ, while for the joint with cavity defects the fracture occurred at the defect location.  相似文献   

18.
Development of welding procedures to join aluminum matrix composite (AMCs) holds the key to replace conventional aluminum alloys in many applications. In this research work, AA6061/B4C AMC was produced using stir casting route with the aid of K2TiF6 flux. Plates of 6 mm thickness were prepared from the castings and successfully butt joined using friction stir welding (FSW). The FSW was carried out using a tool rotational speed of 1000 rpm, welding speed of 80 mm/min and axial force of 10 kN. A tool made of high carbon high chromium steel with square pin profile was used. The microstructure of the welded joint was characterized using optical and scanning electron microscopy. The welded joint showed the presence of four zones typically observed in FSW of aluminum alloys. The weld zone showed fine grains and homogeneous distribution of B4C particles. A joint efficiency of 93.4% was realized under the experimental conditions. But, FSW reduced the ductility of the composite.  相似文献   

19.
In this study, microstructure and mechanical properties of a friction stir welded 18Cr–2Mo ferritic stainless steel thick plate were investigated. The 5.4 mm thick plates with excellent properties were welded at a constant rotational speed and a changeable welding speed using a composite tool featuring a chosen volume fraction of cubic boron nitride (cBN) in a W–Re matrix. The high-quality welds were successfully produced with optimised welding parameters, and studied by means of optical microscopy (OM), scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD) and standard hardness and impact toughness testing. The results show that microstructure and mechanical properties of the joints are affected greatly, which is mainly related to the remarkably fine-grained microstructure of equiaxed ferrite that is observed in the friction stir welded joint. Meanwhile, the ratios of low-angle grain boundary in the stir zone regions significantly increase, and the texture turns strong. Compared with the base material, mechanical properties of the joint are maintained in a comparatively high level.  相似文献   

20.
The feasibility of dissimilar friction stir welding (FSW) in overlap configuration between Ti–6Al–4V alloy (Ti64) and AISI 304 austenitic stainless steels (304SS) was investigated. Sound joints were achieved when placing titanium as the upper workpiece. Joints were successfully produced by employing a welding speed of 1 mm/s and rotational speeds of 300 and 500 rpm. A lamellar microstructure was formed in the stir zone of Ti64, where grain size was found to increase with increasing rotational speed, and austenitic equiaxed grains were obtained near the interface of 304SS coupon. Energy dispersive X-ray spectroscopy (SEM-EDS) of the interface revealed a thin intermixed region and suggested intermetallic compound formation. Microhardness data in the titanium weld zone for both rotational speeds exhibited slightly lower values than the base material, with the lowest values in the heat affected zone, whereas the microhardness values in the stainless steel side around the weld center were found to be higher than those obtained for the base material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号