首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
采用分离式Hopkinson压杆对热冲压淬火-配分(HS-Q&P)钢在0~12000 s^(-1)应变速率范围内进行动态压缩实验,利用SEM,EBSD,XRD等分析表征手段探究动态压缩过程中试样的变形行为。结果表明:实验钢在不同速率下的变形行为基本相似且分为3个阶段,在平台处应力有小幅度增加,增幅更多体现在应变上。在压缩过程中出现的绝热升温会带来软化效应。残余奥氏体的存在会提高实验钢的强度和塑性变形能力。钢中残余奥氏体发生相变诱导塑性(transformation induced plasticity,TRIP)效应减少的体积分数与马氏体增加的体积分数基本一致,证明TRIP效应为钢中主要的强化机制。同时,通过SEM可观测到残余奥氏体发生TRIP效应转变成细小针状马氏体,随着应变速率增加,晶格畸变越来越严重,EBSD图像中可以观测到部分形变孪晶,在不同应变速率下,〈001〉取向的晶粒都会更容易产生形变孪晶。  相似文献   

2.
AZ31镁合金室温拉伸微观变形机制EBSD原位跟踪研究   总被引:1,自引:0,他引:1  
利用电子背散射衍射(EBSD)技术,原位跟踪AZ31镁合金轧制板材室温下沿轧向拉伸时的晶粒取向变化。对变形过程的滑移系和孪晶启动机进行分析。结果表明:变形过程主要由〈a〉基面和柱面滑移系开动而实现,晶粒取向无明显变化,大量〈a〉位错滑移的产生,使得变形后小角度晶界增加明显。晶粒中拉伸孪晶是试样在拉伸变形过程中产生的,而非在试样拉伸后的卸载过程中产生。  相似文献   

3.
By comparison of the observed trace angles of active slip planes with the expected traces in plastically deformed metal polycrystals, conclusions for the local stress state within the grains of polycrystalline aggregates can be drawn. The expected slip systems can be calculated when the local stress tensor and the orientation of the crystallites in the specimen space are known. In fatigued nickel polycrystals, the crystal orientation was determined by the EBSD (electron backscattering diffraction) method in the scanning electron microscope. It was shown that at the relatively small plastic strains under fatigue conditions the crystalline interactions do not essentially influence the local stress state in the grains, but the external uniaxial stress tensor remains valid in good approximation.  相似文献   

4.
During deformation, the orientation of a grain influences not only the deformation mechanisms (slip or twinning) and the specific selection of activated slip or twinning systems for that grain, but also the kinetics of different types of transformation. Schmid factor analysis was applied to determine the orientation dependency of deformation mechanisms in magnesium alloys AZ31 in this work. The orientation changes after the operation of the specific deformation mechanisms were also calculated based on Sachs model. It was found that different deformation mechanisms proceeded differently according to theoretical predictions. Basal slip occurred when basal planes of grains were tilted toward ND around TD. Prismatic slip dominated when basal planes were approximately perpendicular to TD. Calculation results also indicated that the operating of pyramidal 〈a〉 slip can not be neglected. {10 2} twinning was favorable when basal planes were approximately normal to RD and {10 1} twinning was analyzed to be related to the grains with basal orientations. The operating of 〈a + c〉 slip could greatly suppress the activating of twinning by our Schmid factor analysis. Basal orientations with TD and RD scattering can favor basal slip and tension twinning, respectively, after the operation of compression twinning based on the Schmid factor calculations.  相似文献   

5.
The dynamic deformation behaviors and resultant microstructural variations during high-speed rolling(HSR) of a Mg alloy with a non-basal texture are investigated. To this end, AZ31 alloy samples in which the basal poles of most grains are predominantly aligned parallel to the transverse direction(TD) are subjected to hot rolling with different reductions at a rolling speed of 470 m/min. The initial grains with a TD texture are favorable for {10–12} twinning under compression along the normal direction(ND); as a result, {10–12} twins are extensively formed in the material during HSR, and this consequently results in a drastic evolution of texture from the TD texture to the ND texture and a reduction in the grain size. After the initial grains are completely twinned by the {10–12} twinning mechanism, {10–11} contraction twins and {10–11}-{10–12} double twins are formed in the {10–12} twinned grains by further deformation.Since the contraction twins and double twins have crystallographic orientations that are favorable for basal slip during HSR, dislocations easily accumulate in these twins and fine recrystallized grains nucleate in the twins to reduce the increased internal strain energy. Until a rolling reduction of 20%, {10–12}twinning is the main mechanism governing the microstructural change during HSR, and subsequently,the microstructural evolution is dominated by the formation of contraction twins and double twins and the dynamic recrystallization in these twins. With an increase in the rolling reduction, the average grain size and internal strain energy of the high-speed-rolled(HSRed) samples decrease and the basal texture evolves from the TD texture to the ND texture more effectively. As a result, the 80% HSRed sample, which is subjected to a large strain at a high strain rate in a single rolling pass, exhibits a fully recrystallized microstructure consisting of equiaxed fine grains and has an ND basal texture without a TD texture component.  相似文献   

6.
Fatigue and Microstructure of Coronary Artery Stents During implantation the structure of coronary artery stents is subjected to distinct plastic deformation. Subsequently the implant has to sustain up to 700 million cycles induced by the cyclic diameter change of coronary arteries. Regions of high deformation show characteristic deformation structures like slip traces or extrusions and intrusions of grains on the surface without failure of the material. In order to gain information about the microstructural and microtextural evolution during deformation microstructure characterisation by means of scanning electron microscopy as well as transmission electron microscopy and single grain orientation determination were carried out. The analysis of cyclic deformation with different frequencies is of special interest. Several correlations between microstructure and deformation state are observed. Few deformation characteristics occur in the solution annealed stents and increase after dilation. Inhomogeneous deformation behaviour depending on the deformation of individual grains is observed. After cyclic deformation further changes in the microstructure can be observed. These changes caused by cyclic deformation are sensitive to load frequency and generate the formation of a completely different microstructure. Knowledge of microstructure evolution caused by distinct plastic deformation and fatigue in so called oligocrystalline structures is basis for ongoing development in stent optimization.  相似文献   

7.
Numerical simulations can play a major role in the understanding of deformation mechanisms in zinc coatings of galvanized steel sheets during forming processes. A three-dimensional finite element (FE) simulation of a thin zinc coating on a galvanized steel sheet has been performed taking the multicrystalline structure of the coating into account. Experimental characterization of the gauge length of a real in situ tensile specimen reveals 34 large flat zinc grains; the grain orientations are determined using the electron back-scatter diffraction (EBSD) technique. The geometry and orientation of the grains and the plastic deformation modes specific to hexagonal close-packed (hcp) metals as plastic slip and twinning are incorporated into the modeling using a classical crystal plasticity framework. The constraint effect of the substrate is evidenced by comparing the results to the computation of a zinc layer without substrate under the same loading conditions. Attention is then focused on, respectively, the initiation of plastic activity at the grain boundaries, the multiaxial stress state of the grains, the development of a strain gradient within the thickness.  相似文献   

8.
The microstructure and texture evolution of low-stacking fault energy high-manganese austenitic steel during tensile testing at room temperature was studied by means of interrupted tests. Untested material shows fully recrystallized austenitic grains and an almost random texture. During deformation, two deformation mechanisms, mechanical twinning and dislocation gliding, compete with each other. The governing mechanism of a single grain will depend on its crystallographic orientation relative to tensile direction. As a result of the strong interaction between grain orientation and twinning activity at low tensile strain, both grains with and without deformation twins can be observed. However, at high strain all the grains exhibited twin bands. Tensile tested samples were characterized by the presence of a fiber texture with the <111> and <100> directions parallel to the tensile direction.  相似文献   

9.
Xu  Ning  Mao  Pingli  Wang  Xiaoxia  Zhou  Le  Wang  Zhi  Wang  Feng  Liu  Zheng 《Journal of Materials Science》2022,57(31):15121-15136

The aim of this study is to reveal the three detwinning events in AZ31 Mg alloy during in situ tensile test via electron backscatter diffraction (EBSD). To better understand the detwinning mechanisms, shear displacement gradient tensors were used to evaluate local strain accommodation. The results revealed that the strain concentration was responsible for the detwinning of the pre-existing twin. Also, for the two newly formed twins, the shear displacement gradient tensors of the basal and prismatic slip in the adjacent grains can hinder their growth and eventually lead to the detwinning. Detwinning can occur when grains lack effective deformation modes to accommodate the strain from neighboring grains. The kind of local strain accommodation was affected by twin variants and slip modes on both sides of the grain boundary.

  相似文献   

10.
Notched and un-notched tensile specimens of fine grained commercial DP780 steel were deformed in uniaxial tension until fracture. Micro-texture analysis was performed by using an FE-SEM equipped with an EBSD detector and the data were analyzed to quantify orientation gradients within the microstructure of the deformed specimens in terms of Image Quality, Inverse Pole Figure and Taylor Factor map. High deformation ability of DP steels was found to be mostly due to such mechanisms as grain rotation, void creation and evolution, substructure formation within the ferrite grains and the highly plastic stretching of martensite during the deformation process. The true strain of martensite was measured up to 64% and 74% for the un-notched and notched specimens, respectively.  相似文献   

11.
The cryogenic deformation microstructures of impact and tensile specimens of 32Mn–7Cr–1Mo–0.3N austenitic steel were investigated using light microscopy and transmission electron microscopy. The results show that the deformation microstructures of the impact specimens are mainly composed of stacking faults, network dislocation, slip bands, and a few mechanical twins and -martensite. These microstructures cross with each other in a crystal angle. The deformation microstructures of the tensile specimens consist only of massive slip bands, in which a few mechanical twins and -martenite are located. Because of the larger plastic deformation the slip band traces become bent. All the deformation microstructures are formed on the {111} planes and along the <110> orientation.  相似文献   

12.
Electron backscattered diffraction (EBSD) was used to document the microstructure and texture developed due to cross deformation of commercial purity 1050 aluminum alloy. The materials are first deformed in equal channel angular pressing die (ECAP) to different number of passes; 1,4, 8, 12, and 16 passes, via route BC and then deformed in plane strain compression (PSC) to two axial true plastic strain values of 0.5 and 1.0. Deformation path change was proven to be a very effective tool for manipulating the evolution of microstructure and microtexture. The study provides a documentation of the evolution of microstructure parameters namely cell size, misorientation angle, fraction of submicron grain size, and fraction of high angle grain boundaries. These microstructure parameters were investigated on two planes; the plane normal to the loading direction in PSC (RD–TD) and that plane normal to the transverse direction (RD–ND). These microstructure parameters are compared to those achieved due to the ECAP process only. The ideal rolling texture orientations are depicted and crystal orientation maps were generated. The spatial distribution of grains having these orientations is revealed through these maps. The fraction of the main texture components for a 10° spread around the specified orientations is experimentally calculated and a quantitative idea on the evolution of microtexture is also presented.  相似文献   

13.
In this work, a commercial magnesium alloy, AZ31B in hot-rolled condition, has been subjected to severe plastic deformation via four passes of equal channel angular pressing (ECAP) to modify its microstructure. Electron backscatter diffraction (EBSD) was used to characterize the microstructure of the as-received, ECAPed and mechanically loaded specimens. Mechanical properties of the specimens were evaluated under both compression and tension along the rolling/extrusion direction over a wide range of strain rates. The yield strength, ultimate strength and failure strain/elongation under compression and tension were compared in detail to sort out the effects of factors in terms of microstructure and loading conditions. The results show that both the as-received alloy and ECAPed alloy are nearly insensitive to strain rate under compression, and the stress–strain curves exhibit clear sigmoidal shape, pointing to dominance of mechanical twinning responsible for the plastic deformation under compression. All compressive samples fail prematurely via adiabatic shear banding followed by cracking. Significant grain size refinement is identified in the vicinity of the shear crack. Under tension, the yield strength is much higher, with strong rate dependence and much improved tensile ductility in the ECAPed specimens. Tensile ductility is even much larger than the malleability under compression. This supports the operation of 〈c + a〉 dislocations. However, ECAP lowers the yield and flow strengths of the alloy under tension. We attempted to employ a mechanistic model to provide an explanation for the experimental results of plastic deformation and failure, which is in accordance with the physical processes under tension and compression.  相似文献   

14.
Based on the molecular dynamics simulation, plastic deformation mechanisms associated with the zigzag stress curves in perfect and surface defected copper nanowires under uniaxial tension are studied. In our previous study, it has found that the surface defect exerts larger influence than the centro-plane defect, and the 45° surface defect appears as the most influential surface defect. Hence, in this paper, the nanowire with a 45° surface defect is chosen to investigate the defect’s effect to the plastic deformation mechanism of nanowires. We find that during the plastic deformation of both perfect and defected nanowires, decrease regions of the stress curve are accompanied with stacking faults generation and migration activities, but during stress increase, the structure of the nanowire appears almost unchanged. We also observe that surface defects have obvious influence on the nanowire’s plastic deformation mechanisms. In particular, only two sets of slip planes are found to be active and twins are also observed in the defected nanowire.  相似文献   

15.
The inspection method of plastic and/or creep deformations has been required as the quantitative damage estimation procedure for structural components especially used in electric power plants. In this study, the method using electron backscatter diffraction (EBSD) was applied to the deformation and damage evaluation of austenitic stainless steels strained by tension or compression at room temperature and also tested in creep at high temperature. It was found that the value of Grain Average Misorientation (GAM) which showed the average misorientation for the whole observed area including over several dozen grains, was a very useful parameter for quantifying the microstructural change as either the plastic or creep strain increased. The unique linear correlation was obtained between GAM and plastic strain in tension and compression. For creep damage evaluation, the difference of grain average misorientation from the value of the unstrained specimen (ΔGAM) showed an excellent correlation with the inelastic strain below strain at which the tertiary creep began.  相似文献   

16.
A high γ′ volume fraction single-crystal superalloy specimens with various crystallographic orientations were tested under uniaxial tension/compression. The results show that there is apparent tension/compression asymmetry at the initial yielding (plastic strain < 0.2%, where no Kear-Wilsdorf lock and superlattice stacking fault generates during the deformation, so the existing models such as LCP and PPV cannot apply to two-phase nickel-based single-crystal superalloys). In this paper, the effect of elastic deformation on tension/compression asymmetry is discussed. A new constitutive model of two-phase nickel-based single-crystal superalloys is proposed to simulate the tension/compression asymmetry of yield strength. The model could well explain tension/compression asymmetry of two-phase alloy in [0 0 1] and [0 1 1] orientations, however it is not suitable for [1 1 1] orientation mainly due to the different slip mode  相似文献   

17.
Severe plastic deformation(SPD)-induced gradient nanostructured(GNS)metallic materials exhibit supe-rior mechanical performance,especially the high strength and good ductility.In this study,a novel high-speed machining SPD technique,namely single point diamond turning(SPDT),was developed to produce effectively the GNS layer on the hexagonal close-packed(HCP)structural Mg alloy.The high-resolution transmission electron microscopy observations and atomistic molecular dynamics sim-ulations were mainly performed to atomic-scale dissect the grain refinement process and corresponding plastic deformation mechanisms of the GNS layer.It was found that the grain refinement process for the formation of the GNS Mg alloy layer consists of elongated coarse grains,lamellar fine grains with deformation-induced-tension twins and contraction twins,ultrafine grains,and nanograins with the grain size of~70 nm along the direction from the inner matrix to surface.Specifically,experiment results and atomistic simulations reveal that these deformation twins are formed by gliding twinning partial dis-locations that are dissociated from the lattice dislocations piled up at grain boundaries.The corresponding deformation mechanisms were evidenced to transit from the deformation twinning to dislocation slip when the grain size was below 2.45 μm.Moreover,the Hall-Petch relationship plot and the surface equivalent stress along the gradient direction estimated by finite element analysis for the SPDT process were incorporated to quantitatively elucidate the transition of deformation mechanisms during the grain refinement process.Our findings have implications for the development of the facile SPD technique to construct high strength-ductility heterogeneous GNS metals,especially for the HCP metals.  相似文献   

18.
采用MARC/Superform有限元软件对平面应变压缩过程进行了二维有限元分析,分析了上下模具尺寸不相等时,对金属流变规律及其力能参数的影响.同时应用滑移线场理论对端部的滑移线场进行了分析,分析了金属的流动情况,进一步验证了有限元模拟结果的可靠性.研究结果显示:模具尺寸相等时,金属流动呈现对称分布;当上下两个模具尺寸不等时,金属流动呈现非对称分布,有剪切变形产生.而且随着模具尺寸差的增大,其交叉剪切变形越严重,总压力也增大,平均压力相对降低,这与异步轧制过程类似.所研究结果为异步轧制过程提供了一种新的物理模拟方法.  相似文献   

19.
A new approach describing the role of crystallographic orientation in the microstructural refinement of commercially pure aluminum during the successive passes of equal channel angular pressing (ECAP) is introduced. The study is based on analysis of X-ray diffraction texture data that is used to calculate the geometrical position of crystallographic slip planes with respect to the shearing plane of the ECAP die. The angular deviations of {111} slip planes from the macroscopic deformation plane for different processing routes were calculated and compared. The microstructure evolution was investigated using electron back-scattered diffraction (EBSD). The grain size and grain boundary character distribution obtained for each processing route are related to the angles between {111} planes and the shearing plane. It was shown that the more effective routes in grain refinement have higher angles between {111} slip planes and the shearing plane.  相似文献   

20.
Strain-induced martensites in high manganese TRIP/TWIP steels were investigated in the presence of thermal martensites and under the influence of austenitic grain orientation by X-ray diffraction(XRD),scanning electron microscopy(SEM) and electron backscattered diffraction(EBSD).Before deformation,the morphology of α’-M depended mainly on the number of variants and growing period.Regardless of martensite morphologies and deformation,the Kurdjumov-Sachs(K-S) orientation relationships always maintained.The 6 α-M variants formed from a plate of ε-M were of 3 pairs of twins with a common axis <110> α’ parallel to the normal of {111} γ habit plane to minimize transformation strain.When α’-M could be formed only by deformation,it nucleated at the intersection of ε-M variants and grew mainly in thick ε-M plates.Thick ε plates promoted significantly the α’-M and weakened the influence of grain orientations.During tension,the transformation in <100>-oriented grains was observed to be slower than that in <111>-oriented grains.Deformation twins promoted ε-M formation slightly and had no apparent effect on α’-M.Deformation increased the number of ε-M variants,but reduced that of α’-M variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号