首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because fine roots tend to be concentrated at the soil surface, exposure to dry surface soil can have a large influence on patterns of root growth, death and respiration. We studied the effects of arbuscular mycorrhizas (AM) formation on specific root length (SRL), respiration and mortality of fine roots of bearing red grapefruit (Citrus paradisi Macf.) trees on Volkamer lemon (C. volkameriana Tan. & Pasq.) rootstock exposed to drying soil. For each tree, the fine roots were removed from two woody lateral roots, the roots were surface sterilized and then each woody root was placed in a separate pair of vertically divided and independently irrigated soil compartments. The two split-pot systems were filled with sterilized soil and one was inoculated with arbuscular mycorrhizal fungi (Glomus etunicatum/G. intraradices). New fine lateral roots that emerged from the woody laterals were permitted to grow inside the pots over a 10-month period. Irrigation was then removed from the top compartment for a 15-week period. At the end of the study, roots inoculated with AM fungi exhibited about 20% incidence of AM formation, whereas the uninoculated roots were completely void of AM fungi. Arbuscular mycorrhizal roots exhibited lower SRL, lower root/soil respiration and about 10% lower fine root mortality than nonmycorrhizal roots after 15 weeks of exposure to dry surface soil. This study demonstrates the feasibility of examining mycorrhizal effects on the fine roots of adult trees in the field using simple inexpensive methods.  相似文献   

2.
Information on the response of root growth and morphology to soil strength is useful for testing suitability of existing and new tillage methods and/or for selecting plants suitable for a specific site with or without tillage. Although there is extensive published information on the root growth-soil strength relationships for annual agricultural plants, such information is scarce for woody, perennial tree species. The purpose of this study is to examine growth and morphology of the root systems of 17-day-old eucalypt seedlings with respect to variation in soil strength. Soil strength in this study was varied by compaction of a well-aggregated clay soil to bulk densities of 0.7–1.0 Mg m-3 whilst maintaining adequate water availability and aeration for plant growth. Lengths and tip-diameters of primary and lateral roots were measured on the excavated root systems of seedlings.With increase in bulk density and also soil strength (expressed as penetrometer resistance), total length of primary and lateral roots decreased. There were 71 and 31% reduction in the lengths of primary and lateral roots respectively with an increase in penetrometer resistance from 0.4 to 4.2 MPa. This indicated primary roots to be more sensitive to high soil strength than the lateral roots. Average length of lateral roots and diameters of both primary and lateral root tips increased with an increase in soil strength as well. There was greater abundance of lateral roots (no. of lateral roots per unit length of primary root) and root hairs with increased soil strength. The observed root behaviour to variable soil strength is discussed in the context of compensatory growth of roots and overall growth of plants.  相似文献   

3.
在控制条件下云南松幼苗根系对低磷胁迫的响应   总被引:2,自引:0,他引:2  
磷是控制生命过程的重要元素,植物在生长过程中需要大量的磷,低磷常导致一些植物发生适应性变化。云南松(PinusyunnanensisFranch.)以云南高原为起源和分布中心,其对低磷土壤环境表现出了很强的适应能力,广泛分布并正常生长于贫瘠的低磷红壤上,研究云南松对低磷环境的适应机制,对人类探索高效利用有限的磷素资源的方法具有现实意义。本实验通过对不同磷处理水平下培养的云南松幼苗根系生物量和根冠比等的研究,分析了云南松幼苗根系对低磷胁迫的响应。实验所用云南松种子采集自云南省通海县秀山森林公园内的健壮云南松林。结果表明:当磷浓度下降到0.5mmol/L时,云南松幼苗主根长度开始随磷浓度的降低而增加,根冠比随磷浓度的降低而增大,而侧根发生数没有随磷浓度的降低而显示出显著的增减规律,根系生物量也没有随磷浓度的降低而呈现出有规律的增减,根系生物量始终保持在一定的水平。进一步的分析表明:低磷胁迫下,云南松幼苗保证了物质分配对根的优先地位,以维持其根的生物量在一定水平,进而维持整个生命;云南松幼苗主要是靠主根长度的增加而不是靠侧根数量的增加来适应低磷环境。  相似文献   

4.
First-order lateral roots originating in the upper part of the taproot of a woody species, usually termed surface roots, grow close beneath the soil surface, even on irregular or sloping ground. In slope condition, in fact, the surface roots can assume upward as well as downward growth. Existing knowledge on the controls over root direction does not fully explain these field observations.

Two different soil types and sloping conditions were selected in field condition to explore the behaviour of the surface roots in the woody species Spartium junceum L. The root system 3D architecture was measured with a 3D digitizer and the angle of growth (0° = vertically downwards) and the radial direction (0° = horizontally downslope or northwards) of all root segments measured.

Surface roots were more numerous in clay soil than in loam soil, independently from the slope inclination. They had initial angles larger than 90°, i.e. they grew upwards only in clay soil. The subsequent angles of growth maintained this value only in steep-slope condition, showing a clear soil type x slope inclination interaction. The initial angle of all first-order lateral roots decreased linearly with depth of origin on the taproot always in relation to the soil type, with this relationship being stronger in clay soil.

These findings showed that the liminal angle (the preferred angle of growth) of surface roots was mainly affected by the soil type rather than the soil surface inclination. Thus, upward growth must stand in the plasticity of the plagiotropic response of these secondary laterals rather than in a strong internal control.  相似文献   


5.
马守臣  徐炳成  李凤民  黄占斌 《生态学报》2008,28(12):6172-6179
通过田间试验研究了不同时期根修剪处理对冬小麦(Triticum aestivum)根系大小与分布、根系效率、水分利用效率及产量形成的影响。设置4个根修剪处理:越冬期小剪根(WS)、越冬期大剪根(WB),返青期小剪根(GS)、返青期大剪根(GB),未剪根小麦作为对照(CK)。结果表明,到花期时,各根修剪处理小麦的在0~120cm总根量均显著小于对照。与对照相比各根修剪处理主要是显著地减少了上层土壤中的根量。但WS和GS两小剪根处理和对照相比在中层土壤中有较大的根量;花后各处理小麦旗叶的气孔导度和蒸腾速率均显著大于对照。这说明根修剪处理减少了小麦表层的根量,从而削弱了表土干旱信号对作物与外界气体交换的抑制作用。花期时各根修剪小麦的净光合速率均显著高于对照,而单位面积上的根呼吸速率均显著小于对照,根修剪处理提高了小麦的根系效率,使更多的光合产物用于籽粒生产,从而提高了小麦的收获指数。根修剪还提高了小麦的水分利用效率,其中WS、WB、GS处理的水分利用效率显著高于对照。但是GB处理的水分利用效率却没有显著提高。因此,本研究进一步证明了由不同年代品种得到的推测,认为在旱地农业中,通过遗传育种或采用适当农艺措施优化根系分布,既可以减少生长前期作物对水分的过度消耗,又能够削弱花后表土过度干旱对作物生长抑制作用,同时降低根系对同化产物的消耗,对作物产量及水分利用效率的提高具有积极的作用。  相似文献   

6.
This study evaluates the relative contributions of leaves and roots to the belowground allelopathic effects of Mikania micrantha. The hypothesis that leaves contribute more to the allelopathic effect than roots was experimentally tested. We assessed the allelopathic effects of aqueous extracts from Mikania leaves and roots on the seed germination and seedling growth of two co-occurring woody plants in southern China, Lagerstroemia indica L. and Robinia pseudoacacia L. The results showed that the aqueous extracts from Mikania leaves and roots had inhibitory effects on the woody species. Allelopathic activity depended on the concentration of the extracts, target species, and the extract sources (i.e., leaves vs. roots of Mikania). Leaf extract showed stronger allelopathic effects than root extract on germination percentage, initial germination time, speed of germination, and shoot height; while root extract had greater allelopathic effects on roots than leaf extract. The latter phenomenon might greatly promote the invasion success of Mikania due to more direct and effective allelopathy of root. Our results suggest that allelopathy of root extract on belowground biomass might be greater than that of leaf extract for some species in contrast allelopathy of leaf extract on belowground biomass might also be greater than that of root extract for other species, at least for their effects on root growth of the target species.  相似文献   

7.
在福建三明森林生态系统与全球变化研究站陈大观测点开展大气温度控制、土壤温度控制和土壤资源分布3因子试验,探讨土壤资源异质分布和增温对杉木幼苗地下和地上生长的影响,以及增温是否能改变杉木幼苗细根对土壤资源异质分布的识别度,以明确杉木人工林在全球变暖背景下对土壤资源异质分布的响应.结果表明:杉木对土壤资源异质分布的识别度主要体现在吸收根(0~1 mm径级)上,而1~2 mm径级细根则不具有识别度.除了单独大气增温处理对杉木1~2 mm径级细根的避贫系数具有显著影响外,不同增温处理均未对杉木幼树细根的贫富比、趋富系数和避贫系数产生显著影响.与土壤资源均质分布相比,土壤资源异质分布增加了0~1 mm径级细根生物量,降低了树高.与无大气增温相比,大气增温降低了0~1和0~2 mm径级细根生物量,增加了树高.与无土壤增温相比,土壤增温降低了1~2 mm径级细根生物量,但增加了树高和侧枝长度.大气增温控制、土壤增温控制和土壤资源异质分布对杉木地下、地上生长都无显著交互作用.杉木幼苗吸收根本身对土壤资源异质分布具有识别度,但增温并不会改变杉木幼苗细根对土壤资源异质分布的识别度.  相似文献   

8.
干旱胁迫对不同烤烟品种根系生长和生理特性的影响   总被引:4,自引:0,他引:4  
以抗旱型烤烟品种‘农大202'及一般型烤烟品种‘NC89'和‘K326'为材料,采用盆栽试验研究了干旱胁迫对根系生长和生理特性的影响,以明确各烟草品种的抗旱能力及其与根系生长和生理特性的关系.结果显示:严重干旱胁迫之后各烤烟品种根系鲜重、干重上升,而根系活力、根系吸收面积以及根系SOD和POD活性等根系生理指标则呈下降趋势.在干旱胁迫条件下,‘农大202'的根系总吸收面积、活跃吸收面积、根系活力、SOD活性和POD活性均显著高于两对照品种‘NC89'和‘K326',但其根系鲜重和干重等生物量并不具有太大的优势.研究表明,烟草的根系生长和生理特性对环境水分条件的响应存在明显的基因型差异;在干旱胁迫条件下, ‘农大202'根系能保持较高总吸收面积、活跃吸收面积、根系活力和保护酶活性,是其具有较强抗旱性的生理基础.  相似文献   

9.
Miralles  D.J.  Slafer  G.A.  Lynch  V. 《Plant and Soil》1997,197(1):79-86
The effects of Rht alleles on root growth and distribution in isogenic lines of spring wheat (Triticum aestivum L.) are described under different environmental conditions. Above-ground biomass, root length, root dry-weight and their distribution along the soil profile were measured by destructive sampling for growth of aerial biomass and extraction of soil cores containing roots. Field experiments were conducted under non-limiting water and nutritional conditions during two consecutive years, using an early and a late sowing date each year.Dwarfing genes significantly reduced plant height and above-ground biomass at anthesis. In addition, stem mass ratio also was reduced with increases in the allelic dosage. Conversely, total root length and root dry-weight per unit area at anthesis were increased with decreased plant height, therefore, root mass ratio tended to be negatively correlated with plant height. Differences in distribution of root length and root dry-weight through the soil profile among lines were largely confined to the upper soil layers (i.e. the top 30 cm).Differences in root dry-weight were more important than in root length, so that the dwarf line had the highest root mass per unit root length. Furthermore, a significant positive correlation between the root mass ratio and stem mass per unit stem length was found. It is suggested that increases in root mass per unit root length associated with Rht alleles are evidencing a surplus of photoassimilates during stem elongation which are used for thickening the roots due to the lack of alternative sinks. Agronomic implications of this effect are discussed.  相似文献   

10.
Summary Two experiments are described in which a comparison was made of differences in phosphorus contents, dry matter production and root growth between a semi-dwarf wheat (Israel M68) and a standard height cultivar (Olympic). In the first experiment, using soil as a support medium, Olympic had higher root dry weight and root to shoot ratios, but lower root and shoot phosphorus contents, than Israel M68. In the second experiment, using solution culture technique, Olympic had higher root dry weights and root to shoot ratios, but there was no cultivar difference in either root or shoot phosphorus content. This suggests an improved ability in the semi-dwarf wheat to explore the soil system. In both experiments the rate of uptake of phosphorus, when calculated per unit root fresh weight, was highest with Israel M68. Root measurements in a later experiment (Experiment 2a) indicated similar total fresh weights for both cultivars, but on a unit fresh weight basis, the semi-dwarf cultivar had a greater root number, root area and lateral root volume. Although further studies to clarify the situation are necessary, these differences may be associated with the enhanced grain yield response to superphosphate of some semi-dwarf wheats when compared to standard height cultivars. re]19751104  相似文献   

11.
To understand soil colonization by a root system, information is needed on the architecture of the root system. In monocotyledons, soil exploration is mainly due to the growth of adventitious primary roots. Primary root emergence in banana was quantified in relation to shoot and corm development. Root emergence kinetics were closely related to the development of aerial organs. Root position at emergence on the corm followed an asymptotic function of corm dry weight, so that the age of each root at a given time could be deduced from its position. Root diameter at emergence was related to the position of the roots on the corm, with younger roots being thicker than older ones. However, root diameters were not constant along a given root, but instead decreased with the distance to the base; roots appear to be conical in their basal and apical parts. Root growth directions at emergence were variable, but a high proportion of the primary roots emerged with a low angle to the horizontal. Further research is needed to evaluate whether these initial trajectories are conserved during root development. Results presented in this study are in good agreement with those reported for other monocotyledons such as maize and rice. They give quantitative information that will facilitate the development of models of root system architecture in banana.  相似文献   

12.
The importance of species richness to ecosystem functioning and services is a central tenet of biological conservation. However, most of our theory and mechanistic understanding is based on diversity found aboveground. Our study sought to better understand the relationship between diversity and belowground function by studying root biomass across a plant diversity gradient. We collected soil cores from 91 plots with between 1 and 12 aboveground tree species in three natural secondary forests to measure fine root (≤ 2 mm in diameter) biomass. Molecular methods were used to identify the tree species of fine roots and to estimate fine root biomass for each species. This study tested whether the spatial root partitioning (species differ by belowground territory) and symmetric growth (the capacity to colonize nutrient-rich hotspots) underpin the relationship between aboveground species richness and fine root biomass. All species preferred to grow in nutrient-rich areas and symmetric growth could explain the positive relationship between aboveground species richness and fine root biomass. However, symmetric growth only appeared in the nutrient-rich upper soil layer (0–10 cm). Structural equation modelling indicated that aboveground species richness and stand density significantly affected fine root biomass. Specifically, fine root biomass depended on the interaction between aboveground species richness and stand density, with fine root biomass increasing with species richness at lower stand density, but not at higher stand density. Overall, evidence for spatial (i.e. vertical) root partitioning was inconsistent; assumingly any roots growing into deeper unexplored soil layers were not sufficient contributors to the positive diversity–function relationship. Alternatively, density-dependent biotic interactions affecting tree recruitment are an important driver affecting productivity in diverse subtropical forests but the usual root distribution patterns in line with the spatial root partitioning hypothesis are unrealistic in contexts where soil nutrients are heterogeneously distributed.  相似文献   

13.
相同条件下相同生长期的植物根系生长与适应策略及其差异性还不清楚。因此,采集岷江干旱河谷地区25种乡土植物(木本15/草本10种)的种子于2009年3月播种在同一干旱环境中,9月测定了1年生植株的最大根深(RDmax)、根幅(RW)与根生物量(RB),计算了总根长(TRL)、比根长(SRL)及细/粗根生物量比(RBf/c),分析了它们之间的关系,进行了根系功能组划分。结果表明:1)25种植物1年生植株RDmax与RW变异较小,总变异率为14.9%和20.7%;TRL和SRL变异相对较大,分别为28.5%和34.7%,草本植物SRL明显大于木本植物;RB和RBf/c种间变异较大,总变异率分别为50.1%和70.5%;2)25种植物的RDmax、RW、RB和TRL间呈显著正相关关系,表明根系较深的物种RW较大,TRL和RB也较高;SRL与RDmax呈极显著负相关关系,与RBf/c呈极显著正相关关系,表明根系垂直分布较浅的物种细根发达,SRL较大;3)主成分分析显示,25种植物可分为3个功能组:第1组具有较大RDmax、RW和RB,资源利用持续时间较长;第2组具有较大TRL、SRL和RBf/c,资源利用效率较高;第3组根系功能性状没有一致的突出特点,可能通过降低自身生理机能适应生存条件。综合分析表明,岷江干旱河谷区25种植物1年生植株根系的功能性状变异明显,可塑性大,历经长期自然选择压力而形成了不同的环境适应策略,但生长型并不必然表达出1年生植株根系功能性状的差异性。  相似文献   

14.
Soil stockpiling is a common practice prior to the reclamation of surface mines. In this study, velvetleaf blueberry and Labrador tea plants were grown from seed in fresh soil, stockpiled soil (1 year), and autoclaved stockpiled soil (1 year) obtained from the Canadian boreal forest. After 7 months of growth, the root colonization intensity with ericoid mycorrhizal (ERM) fungi in both plants growing in stockpiled soil was lower compared to plants growing in the fresh soil. The diversity of ERM fungal species in roots also decreased due to soil stockpiling and Pezoloma ericae was absent from the plants growing in stockpiled soil. Changes in the ERM root colonization in plants growing in stockpiled soil were accompanied by decreases in root and shoot dry weights. Leaf chlorophyll, nitrogen, and phosphorus concentrations of velvetleaf blueberry were higher in fresh soil compared to 1‐year stockpiled soil. Plants grown in the autoclaved stockpiled soil became colonized by the thermotolerant ERM fungus Leohumicola verrucosa and showed higher root and shoot biomass compared to the nonautoclaved stockpiled soil. The results point to the importance of ERM fungi for growth of ericaceous plants, even under favorable environmental conditions and adequate fertilization, and suggest that reduced ERM colonization intensity and ERM fungal diversity in roots likely contributed to the negative effects of soil stockpiling on growth of velvetleaf blueberry and Labrador tea.  相似文献   

15.
We present a simple framework for modelling root growth and distribution with depth under varying soil water conditions. The framework considers the lateral growth of roots (proliferation) and the vertical extension of roots (root front velocity). The root front velocity is assumed to be constant when the roots descend into an initially wet soil profile. The lateral growth of roots is governed by two factors: (1) the current root mass or root length density at a given depth, and (2) soil water availability at that depth.Under non-limiting soil water conditions, the increase in root mass at any depth is governed by a logistic equation so that the root length density (R v) cannot exceed the maximum value. The maximumR v, is assumed to be the same for all depths. Additional dry matter partitioned to roots is initially distributed according to the current root mass at each depth. As the root mass approaches the maximum value, less dry matter is partitioned to that depth.When soil water is limiting, a water deficit factor is introduced to further modify the distribution of root dry matter. It is assumed that the plant is an energy minimiser so that more root mass is partitioned to the wetter regions of the soil where least energy will be expended for root growth. Hence, the model allows for enhanced root growth in areas where soil water is more easily available.Simulation results show that a variety of root distribution patterns can be reproduced due to varying soil water conditions. It has been demonstrated that broad patterns of root distribution reported in the literature can also be simulated by the model.  相似文献   

16.
This paper presents selected results on the above- and below-ground growth performance of twelve indigenous woody species commonly found growing naturally in unstable riparian slope and/or bank environments throughout New Zealand. This study was needed because little information exists on the effectiveness of New Zealand’s indigenous riparian plant species for slope and stream bank stabilisation. By examining the growth performance of selected riparian species during the first 5 years following establishment, we provide valuable insights into the likely strengths and limitations of individual species at maturity and, therefore, into their overall potential usefulness, singularly and/or as mixed plantings, for future riparian stabilisation projects. For all species, their root systems are typically shallow and confined to the uppermost 31 cm of soil. Root spread (mean maximum diameter) increased with increasing age with interspecies differences, by age 5 years, ranging from between ~1 and 2.5 m. At age 5 years the mean root biomass, for all species combined, was 1.2 kg/plant, and averaged ~23% of total plant biomass. Changes in the allocation of biomass for root and shoot growth appear to be species and age dependent. The results of this study indicate that most have above- and below-ground growth attributes well suited to colonising steep and unstable riparian slopes where shallow soil failure is prevalent and/or where stream banks are rocky with skeletal soils. All form part of the early plant succession. Once established, and in the absence of grazing, they are relatively fast growing. The effectiveness of riparian restoration programmes using indigenous species, though potentially high for low-order stream, will be limited by their relatively shallow-rooted habit for bank stabilisation on larger rivers without the prior installation of structural protection works.  相似文献   

17.
Dech JP  Maun MA 《Annals of botany》2006,98(5):1095-1105
BACKGROUND AND AIMS: Burial is a recurrent stress imposed upon plants of coastal dunes. Woody plants are buried on open coastal dunes and in forested areas behind active blowouts; however, little is known about the burial responses and adaptive traits of these species. The objectives of this study were: (a) to determine the growth and morphological responses to burial in sand of seven woody plant species native to central Canadian coastal dunes; and (b) to identify traits that determine burial tolerance in these species. METHODS: Field experiments were conducted to determine the responses of each species to burial. Saplings were exposed to burial treatments of 0, 10, 25, 50 and 75 % of their height. Burial responses were evaluated based on regressions of total biomass, height, adventitious root production and percentage allocation to shoot, root and adventitious root biomass on percentage burial. KEY RESULTS: Pinus strobus and Picea glauca lacked burial tolerance. In response to the burial gradient, these species showed a strong linear decline in total biomass, minimal adventitious root production that peaked at moderate levels (25-50 % burial) and no change in allocation to shoots vs. roots. The tolerant species Juniperus virginiana, Thuja occidentalis and Picea mariana showed a quadratic response to burial, with little change in biomass up to 50 % burial, but a large decline at 75 %. These species produced abundant adventitious roots up to 50 % burial, but did not alter allocation patterns over the range of burial levels. Populus balsamifera and Salix cordata were stimulated by burial. These species showed linear increases in biomass with increasing burial, produced copious adventitious roots across the gradient and showed a clear shift in allocation to vertical shoot growth and adventitious root production at the expense of the original roots under high burial conditions. CONCLUSIONS: Adventitious root production and plastic resource allocation to biomass are adaptive traits of coastal dune woody plants in central Canada, and provide a basis for assessing burial tolerance in woody plants on coastal dunes throughout the world.  相似文献   

18.
The fine root systems of three tropical montane forests differing in age and history were investigated in the Cordillera Talamanca, Costa Rica. We analyzed abundance, vertical distribution, and morphology of fine roots in an early successional forest (10–15 years old, ESF), a mid‐successional forest (40 years old, MSP), and a nearby undisturbed old‐growth forest (OGF), and related the root data to soil morphological and chemical parameters. The OGF stand contained a 19 cm deep organic layer on the forest floor (i.e., 530 mol C/m2), which was two and five times thicker than that of the MSF (10 cm) and ESF stands (4 cm), respectively. There was a corresponding decrease in fine root biomass in this horizon from 1128 g dry matter/m2 in the old‐growth forest to 337 (MSF) and 31 g/m2 (ESF) in the secondary forests, although the stands had similar leaf areas. The organic layer was a preferred substrate for fine root growth in the old‐growth forest as indicated by more than four times higher fine root densities (root mass per soil volume) than in the mineral topsoil (0–10 cm); in the two secondary forests, root densities in the organic layer were equal to or lower than in the mineral soil. Specific fine root surface areas and specific root tip abundance (tips per unit root dry mass) were significantly greater in the roots of the ESF than the MSF and OGF stands. Most roots of the ESF trees (8 abundant species) were infected by VA mycorrhizal fungi; ectomycorrhizal species (Quercus copeyemis and Q. costaricensis) were dominant in the MSF and OGF stands. Replacement of tropical montane oak forest by secondary forest in Costa Rica has resulted in (1) a large reduction of tree fine root biomass; (2) a substantial decrease in depth of the organic layer (and thus in preferred rooting space); and (3) a great loss of soil carbon and nutrients. Whether old–growth Quercus forests maintain a very high fine root biomass because their ectomycorrhizal rootlets are less effective in nutrient absorption than those of VA mycorrhizal secondary forests, or if their nutrient demand is much higher than that of secondary forests (despite a similar leaf area and leaf mass production), remains unclear.  相似文献   

19.
浙江楠容器育苗基质的比较和筛选   总被引:7,自引:1,他引:6  
用泥炭、珍珠岩、蛭石、稻壳和阔叶树木片按不同体积比配成18种基质,以园土为对照,研究了不同基质对1年生浙江楠(Phoebe chekiangensis C.B.Shang)实生苗生长及生理特性的影响并筛选出适宜的浙江楠容器育苗基质。结果表明,以体积比5:3:2的泥炭、蛭石和阔叶树木片为基质培育的浙江楠幼苗的株高、地径、径根比、地上部干质量和鲜质量、根系干质量和鲜质量、根系活力以及叶片可溶性糖和可溶性蛋白质含量等指标均显著高于对照。该基质的持水性和保水性较好,持水量达608.64g·L^-1,可作为浙江楠容器育苗的适宜基质进行推广应用。  相似文献   

20.
在塔克拉玛干沙漠腹地,采用分层分段挖掘法对不同灌溉量条件下(每株每次灌水35、24.5和14 kg)梭梭(Haloxylon ammodendron)幼苗根系的分布特征进行了研究。结果表明: 1)随着灌溉量的减少,梭梭幼苗根系生物量的分布格局有向深层发展的趋势,在不同灌溉量条件下地下垂直各层生物量与土壤垂直深度呈显著的负对数关系;2)各灌溉量梭梭幼苗的最大水平根长为垂直根长的2倍,但不同灌溉量根系生物量的水平分布趋势一致;3)吸收根生物量的垂直分布与土壤含水量的垂直变化基本一致,均呈“单峰型”曲线,但灌溉量不同,吸收根生物量峰值在土壤中出现的位置也不同,随着灌溉量的减少,吸收根集中分布区有向深层发展的趋势;4)根长、根表面积和根体积随着土壤深度的增加均呈“单峰型”曲线,灌溉量愈小,根长、根表面积和根体积的峰值愈位于土壤的深层;5)根冠比和垂直根深与株高之比随着灌溉量的减少而呈增加的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号