首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complete nuclear-encoded (18S) small subunit rRNA gene sequences were determined for four charophycean green algae, Chlorokybus atmophyticus, Coleochaete orbicularis, Klebsormidium flaccidum, and Nitella sp. Chlorokybus atmophyticus and Coleochaete orbicularis have been previously suggested to represent the most basal and most derived taxa within the charophytes, respectively. However, parsimony analysis of our 18S rDNA sequences along with a selection of other complete green algal and land plant 18S rDNA sequences yields a gene tree topology in which Chlorokybus is the most basal taxon, followed by the branching of Coleochaete and Klebsormidium. Two “sister” clades then diverge, one including Nitella and the land plants, and the second, members of the Chlorophyceae and Pleurastrophyceae. Despite producing slightly diiferent gene tree topologies than those inferred from parsimony, distance analyses of the 18S rDNA sequences also do not indicate a strong affinity between the land plants and Coleochaete. Rather, Klebsormidium and Coleochaete are virtually equidistant from the land plant taxa. Other data are needed in order to assess the unexpected findings reported here, particularly the position of Coleochaete.  相似文献   

2.
The freshwater green alga Coleochaete Breb. (Coleochaetaceae; Coleochaetales) is a key streptophyte genus and is important to the understanding of the evolutionary origin of embryophytes (land plants). To date only a few species have been available from public culture collections. To facilitate research on this genus we have isolated 17 previously uncultured species of Coloechaete from material collected in the United States, Puerto Rico, and the Dominican Republic. Sequences for the genes rbcL and atpB were determined for these new isolates of Coleochaete (and for existing cultures) and combined with sequences from representative other streptophytes. Phylogenetic analyses indicate that Coleochaete, along with Chaetosphaeridium and Chara, are closely related to embryophytes and constitute a ‘higher streptophyte’ clade. At least four well‐supported lineages exist within Coleochaete. Characteristic growth forms have been identified for these four lineages, with important characters including aspects of thallus establishment, thallus habit, zygote development and hair sheath position. These data provide an improved understanding of species diversity and character evolution in the genus Coleochaete, and facilitate examination of hypotheses concerning character evolution in the streptophytes.  相似文献   

3.
Following fertilization, zygotes of the green alga Coleochaete orbicularis, which are retained on the haploid thallus, first enlarge, then become covered with a layer of vegetative cells. Light microscopy and high-voltage electron microscopy revealed the presence of localized wall ingrowths in vegetative cells adjacent to zygotes. These covering cells resemble the gametophytic placental transfer cells of embryophytes in their morphology, location, and time of development. If Coleochaete cells with wall protuberances function as do placental transfer cells of embryophytes, their presence is evidence that photosynthates may be transported between haploid thallus cells and zygotes. Thus, a nutritional relationship between different phases of the life cycle, similar to that which occurs in embryophytes, may also have evolved in green algae. This first report of putative placental transfer cells in a green alga supports Bower's (1908) ideas concerning the origin of land plant sporophytes and alternation of generations. The presence or absence of cells with wall ingrowths in several species of Coleochaete was correlated with estimates of zygote-plant area ratios.  相似文献   

4.
Study of charophycean green algae, including the Coleochaetales, may shed light on the evolutionary history of characters they share with their land plant relatives. We examined the tubulin cytoskeleton during mitosis, cytokinesis, and growth in members of the Coleochaetales with diverse morphologies to determine if phragmoplasts occurred throughout this order and to identify microtubular patterns associated with cell growth. Species representing three subgroups of Coleochaete and its sister genus Chaetosphaeridium were studied. Cytokinesis involving a phragmoplast was found in the four taxa examined. Differential interference contrast microscopy of living cells confirmed that polar cytokinesis like that described in the model flowering plant Arabidopsis occurred in all species when the forming cell plate traversed a vacuole. Calcofluor labeling of cell walls demonstrated directed growth from particular cell regions of all taxa. Electron microscopy confirmed directed growth in the unusual growth pattern of Chaetosphaeridium. All four species exhibited unordered microtubule patterns associated with diffuse growth in early cell expansion. In subsequent elongating cells, Coleochaete irregularis Pringsheim and Chaetosphaeridium globosum (Nordstedt) Klebahn exhibited tubulin cytoskeleton arrays corresponding to growth patterns associated with tip growth in plants, fungi, and other charophycean algae. Hoop‐shaped microtubules frequently associated with diffuse growth of elongating cells in plants were not observed in any of these species. Presence of phragmoplasts in the diverse species studied supports the hypothesis that cytokinesis involving a phragmoplast originated in a common ancestor of the Coleochaetales, and possibly in a common ancestor of Charales, Coleochaetales, Zygnematales, and plants.  相似文献   

5.
For a century the green alga Coleochaete has figured prominently in considerations of the origins of land plants (embryophytes). Certain of its advanced features contributed to Bower's (1908) theories on the origin of the land plant sporophyte by intercalation. Though Bower's ideas were disputed in later years, recent investigations of Coleochaete and other green algae have lent strong support to them. At present it appears that further study of Coleochaete and other charophycean algae may contribute much to our understanding of how a number of plant features, including reproductive ones, originated.  相似文献   

6.
In view of the relative importance of reproductive cell ultrastructure in phylogenetic and systematic studies of green algae, we investigated the fine structure of germinating zygotes and meiospores of Coleochaete pulvinata Braun. Meiospores have a flagellar apparatus very similar to that of zoospores and spermatozoids of the same species. Meiospores differ from zoospores and spermatozoids of C. pulvinata in having pyramidal body scales similar to those present on zoospores of C. scutata. Meiospores of C. pulvinata had as many as twice the number of spline microtubules as zoospores, and four times the number present in splines of spermatozoids of the same species. Developing meiospores of C.pulvinata, like those of other Coleochaete species, are individually surrounded by chamber walls. These differed from vegetative cell walls in lacking plasmodesmata. Moreover, the chamber walls in germinating zygotes of C.pulvinata stained a cobalt blue color with resorcinal blue, and fluoresced yellow in the presence of aniline blue, thus exhibiting the staining characteristics of callose. In location, morphology and presence of callose, chamberwalls resemble “special walls” of land plants, they may represent a charophycean spore development preadaptation useful in the evolution of walled spores characteristic of land  相似文献   

7.
8.
Diatoms have been classified historically as either centric or pennate based on a number of features, cell outline foremost among them. The consensus among nearly every estimate of the diatom phylogeny is that the traditional pennate diatoms (Pennales) constitute a well‐supported clade, whereas centric diatoms do not. The problem with the centric–pennate classification was highlighted by some recent analyses concerning the phylogenetic position of Toxarium, whereby it was concluded that this “centric” diatom independently evolved several pennate‐like characters including an elongate, pennate‐like cell outline. We performed several phylogenetic analyses to test the hypothesis that Toxarium evolved its elongate shape independently from Pennales. First, we reanalyzed the original data set used to infer the phylogenetic position of Toxarium and found that a more thorough heuristic search was necessary to find the optimal tree. Second, we aligned 181 diatom and eight outgroup SSU rDNA sequences to maximize the juxtapositioning of similar primary and secondary structure of the 18S rRNA molecule over a much broader sampling of diatoms. We then performed a number of phylogenetic analyses purposely based on disparate sets of assumptions and found that none of these analyses supported the conclusion that Toxarium acquired its pennate‐like outline independently from Pennales. Our results suggest that elongate outline is congruent with SSU rDNA data and may be synapomorphic for a larger, more inclusive clade than the traditional Pennales.  相似文献   

9.
Geitler , Lothar . (Botanisches Institut, Universität, Wien, Austria.) Spontaneous partial rotation and oscillation of the protoplasm in Coleochaete and other Chlorophyceae. Amer. Jour. Bot. 48(8): 738–741. 1961.—In certain differentiated cells, such as the hairs, zoosporangia, oogonia, but also in the unicellular germlings, of species of Coleochaete, Chaetotheke, and Chaetosphaeridium, there occurs regularly a spontaneous movement of the protoplasm, which expresses itself strikingly in rapid rotation or oscillation of the chromatophore. The movement occurs partially and localized in certain parts of the cell. It is comparable to no type of protoplasmic streaming known up to the present. Rotation and oscillation occur as regular, cell-specific attributes, but rotation may be converted experimentally and transiently into oscillation. Oscillation is an intermittent rotation with periodic change of direction. Exploratory researches concerning osmotic values and permeability do not yet reveal definite relationships between the several types of movement in various specialized cells and their physiological condition. However, only the hair cells of Coleochaete and Chaetotheke with rotation show selective vital-staining with neutral red; the similarly constructed ones of Chaetosphaeridium with oscillation do not.  相似文献   

10.
This study provides data on cell division in Coleochaete orbicularis, an important taxon in evolutionary theories deriving land plants from green algae. Vegetative growth in discoid species of Coleochaete results from marginal cell division in two planes—radial and circumferential. Like many algae and certain of the simple land plants, Coleochaete is monoplastidic. Prior to mitosis, the single plastid migrates to a position where it will divide and be distributed into the daughter cells. Unlike monoplastidic cell division in hornworts, mosses, and lycopsids; microtubule nucleation is not intimately associated with the plastids. Instead, microtubule organization is associated with centriolar centrosomes throughout the cell cycle, as is common in algae. The cytokinetic apparatus lacks preprophase bands of microtubules, but includes typical phragmoplasts consisting of brushlike arrays of microtubules on either side of a dark zone. However, the origin and role of phragmoplasts is unusual. Phragmoplasts appear to develop among microtubules that emanate from the polar centrosomes rather than from nuclear envelopes and/or plastids. The function of phragmoplasts in Coleochaete is unclear, as the process of cytokinesis is not strictly centrifugal. Some infurrowing occurs in radial division, and cytokinesis appears to be entirely centripetal by infurrowing in circumferential division. The cortical arrays of microtubules differ from those typical of land plants in that they develop as a network in association with centrosomes after mitosis.  相似文献   

11.
12.
An ultrastructural study of motile cell development in the green alga Trentepohlia aurea has revealed the presence of multilayered structures (MLS) associated With flagellar bases. These MLS are ultrastructurally similar to MLS described in pteridophyte and bryophyte sperm and in the zoospore of the green algae Coleochaete and Klebsormidium. However, 2 MLS are found in each biflagellate motile cell of T. aurea, while other previously described MLS occur singly in biflagellate motile cells. In addition, the MLS of T. aurea consist of fewer microtubules and are structurally simpler than most other MLS described. The MLS of Trentepohlia may represent a stage in the evolutionary development of the MLS of land plants. The presence or absence of the MLS in motile cells of green algae may be a useful character in phylogenetic studies.  相似文献   

13.
This study evaluated the phylogenetic relationship among samples of “Chantransia” stage of the Batrachospermales and Thoreales from several regions of the world based on sequences of two genes—the plastid‐encoded RUBISCO LSU gene (rbcL) and the nuclear SSU ribosomal DNA gene (SSU rDNA). All sequences of “Chantransia macrospora” were shown to belong to Batrachospermum macrosporum based on both molecular markers, confirming evidence from previous studies. In contrast, nine species are now associated with “Chantransia pygmaea,” including seven species of the Batrachospermales and two of the Thoreales. Therefore, the presence of “C. macrospora” in a stream can be considered reliable evidence that it belongs to B. macrosporum, whereas the occurrence of “C. pygmaea” does not allow the recognition of any particular species, since it is associated with at least nine species. Affinities of “Chantransia” stages to particular taxa were congruent for 70.5% of the samples comparing the rbcL and SSU analyses, which were associated with the same or closely related species for both markers. Sequence divergences have been reported in the “Chantransia” stage in comparison to the respective gametophyte, and this matter deserves further attention.  相似文献   

14.
The evolution of body size in Anolis lizards of the Lesser Antilles Islands has been the subject of intensive, if divisive, study. Early research by Schoener revealed a regularity in the number of Anolis species that coexisted on islands and the difference in body size between coexisting congeners in the Northern Lesser Antilles. This consistent pattern of body size was suggested to be the result of competitive character displacement. Two recent studies critically evaluated this hypothesis by incorporating information about the phylogenetic relationships of insular Anolis. Roughgarden and Pacala suggested that the patterns of body-size differences in the Northern Lesser Antilles could be explained as a cyclical phenomenon that they labeled a taxon cycle. However, Losos supported the character-displacement hypothesis (“size adjustment”). The conflict between these two studies is important because both investigations were based on the same phylogenetic hypothesis. We investigated body-size evolution in Lesser Antilles Anolis to resolve the differences in the conclusions of these studies. Our new analysis supported the taxon-cycle hypothesis but nevertheless failed to reject the character-displacement hypothesis. We argue that this curious scenario is largely a function of the method by which phylogenetic information is incorporated in comparative analyses. Different comparative analyses may lead to dramatic differences in results and ambiguity in the conclusions to be drawn. We suggest that ecologists and evolutionary biologists specifically consider the underlying assumptions and models of character evolution inherent to each of the phylogenetically based analytical methods now available.  相似文献   

15.
Nuclear-encoded small-subunit (18S) ribosomal RNA genes of Chara australis R. Brown (C. corallina var. nobilis f. nobilis R.D.W.) and Nitella flexilis (L.) Ag. were amplified by polymerase chain reaction, cloned, and completely sequenced. Using structural criteria, the sequences were aligned with 18S ribosomal DNAs (rDNAs) from 11 other chlorophyll b-containing algae and six higher plants (embryophytes). Phylogenetic trees were inferred by distance, neighbor-joining, parsimony, and maximum-likelihood approaches; confidence intervals were estimated by bootstrapping, and nonrandomness of tree structure was confirmed by permutation tests. 18S rDNAs of C. australis and two Nitella species were found to be specifically related and, together with 18S rDNAs of Chlorokybus atmophyticus Geitler, Klebsormidium flaccidum (A. Br.) Silva, Mattox, et Blackwell, and two Coleochaete species, support a robust monophyletic group (Charophyceae). Although most trees favored a specific sister-group relationship between Charophyceae and embryophytes, statistical tests revealed that a sister-group relationship between Charophyceae and Chlorophyceae could not be ruled out. Additional complete sequences from 18S rDNAs of lower land plants may be required to resolve phylogenetic relationships among these organisms.  相似文献   

16.
The streptophytes comprise the Charophyceae sensu Mattox and Stewart (a morphologically diverse group of fresh‐water green algae) and the embryophytes (land plants). Several charophycean groups are currently recognized. These include the Charales, Coleochaetales, Chlorokybales, Klebsormidiales and Zygnemophyceae (Desmidiales and Zygnematales). Recently, SSU rRNA gene sequence data allied Mesostigma viride (Prasinophyceae) with the Streptophyta. Complete chloroplast sequence data, however, placed Mesostigma sister to all green algae, not with the streptophytes. Several morphological, ultrastructural and biochemical features unite these lineages into a monophyletic group including embryophytes, but evolutionary relationships among the basal streptophytes remain ambiguous. To date, numerous studies using SSU rRNA gene sequences have yielded differing phylogenies with varying degrees of support dependent upon taxon sampling and choice of phylogenetic method. Like SSU data, chloroplast DNA sequence data have been used to examine relationships within the Charales, Coleochaetales, Zygnemophyceae and embryophytes. Representatives of all basal streptophyte lineages have not been examined using chloroplast data in a single analysis. Phylogenetic analyses were performed using DNA sequences of rbcL (the genes encoding the large subunit of rubisco) and atpB (the beta‐subunit of ATPase) to examine relationships of basal streptophyte lineages. Preliminary analyses placed the branch leading to Mesostigma as the basal lineage in the Streptophyta with Chlorokybus, the sole representative of the Chlorokybales, branching next. Klebsormidiales and the enigmatic genus Entransia were sister taxa. Sister to these, the Charales, Coleochaetales, embryophytes and Zygnemophyceae formed a monophyletic group with Charales and Coleochaetales sister to each other and this clade sister to the embryophytes.  相似文献   

17.
The genus Pseudulvella Wille 1909 includes epiphytic, freshwater, or marine disk‐shaped green microalgae that form quadriflagellate zoospores. No ultrastructural or molecular studies have been conducted on the genus, and its evolutionary relationships remain unclear. The purpose of the present study is to describe the life history, ultrastructural features, and phylogenetic affiliations of Pseudulvella americana (Snow) Wille, the type species of the genus. Thalli of this microalga were prostrate and composed of radiating branched filaments that coalesced to form a disk. Vegetative cells had a pyrenoid encircled by starch plates and traversed by one or two convoluted cytoplasmic channels. They had well‐defined cell walls without plasmodesmata. Asexual reproduction was by means of tetraflagellate zoospores formed in numbers of two to eight from central cells of the thallus. The flagellar apparatus of zoospores was cruciate, with four basal bodies and four microtubular roots. The paired basal bodies lay directly opposite (DO) one another. The microtubular root system had a 5‐2‐5‐2 alternation pattern, where the “s” roots contained five microtubules in a four‐over‐one configuration. A tetralobate nonstriated distal fiber connected all four basal bodies. A wedge‐shaped proximal sheath subtended each of the basal bodies. The ultrastructural features of the zoospores were those of members of the order Chaetopeltidales. Phylogenetic analyses based on SSU rDNA placed P. americana sister to Chaetopeltis orbicularis in a well‐supported Chaetopeltidales clade. Such a combination of features confirmed that this alga is a member of the order Chaetopeltidales.  相似文献   

18.
A new parsimony analysis of 27 complete mitochondrial genomic sequences is conducted to investigate the phylogenetic relationships of plethodontid salamanders. This analysis focuses on the amount of character conflict between phylogenetic trees recovered from newly conducted parsimony searches and the Bayesian and maximum likelihood topology reported by Mueller et al. (2004 ; PNAS, 101, 13820–13825). Strong support for Hemidactylium as the sister taxon to all other plethodontids is recovered from parsimony analyses. Plotting area relationships on the most parsimonious phylogenetic tree suggests that eastern North America is the origin of the family Plethodontidae supporting the “Out of Appalachia” hypothesis. A new taxonomy that recognizes clades recovered from phylogenetic analyses is proposed. © The Willi Hennig Society 2005.  相似文献   

19.
A cladistic analysis was carried out to resolve phylogenetic pattern among bryophytes and other land plants. The analysis used 22 taxa of land plants and 90 characters relating to male gametogenesis.Coleochaete orChara/Nitella were the outgroups in various analyses using HENNIG86, PAUP, and MacClade, and the land plant phylogeny was unchanged regardless of outgroup utilized. The most parsimonious cladograms from HENNIG86 (7 trees) have treelengths of 243 (C.I. = 0.58, R.I. = 0.82). Bryophytes are monophyletic as are hornworts, liverworts, and mosses, with hornworts identified as the sister group of a liverwort/moss assemblage. In vascular plants, lycophytes are polyphyletic andSelaginella is close to the bryophytes.Lycopodium is the sister group of the remaining vascular plants (minusSelaginella). Longer treelengths (over 250) are required to produce tree topologies in which either lycophytes are monophyletic or to reconstruct the paraphyletic bryophyte phylogeny of recent authors. This analysis challenges existing concepts of bryophyte phylogeny based on more classical data and interpretations, and provides new insight into land plant evolution.  相似文献   

20.
The cell walls of Porphyra species, like those of land plants, contain cellulose microfibrils that are synthesized by clusters of cellulose synthase enzymes (“terminal complexes”), which move in the plasma membrane. However, the morphologies of the Porphyra terminal complexes and the cellulose microfibrils they produce differ from those of land plants. To characterize the genetic basis for these differences, we have identified, cloned, and sequenced a cellulose synthase (CESA) gene from Porphyra yezoensis Ueda strain TU‐1. A partial cDNA sequence was identified in the P. yezoensis expressed sequence tag (EST) index using a land plant CESA sequence as a query. High‐efficiency thermal asymmetric interlaced PCR was used to amplify sequences upstream of the cDNA sequence from P. yezoensis genomic DNA. Using the resulting genomic sequences as queries, we identified additional EST sequences and a full‐length cDNA clone, which we named PyCESA1. The conceptual translation of PyCESA1 includes the four catalytic domains and the N‐ and C‐terminal transmembrane domains that characterize CESA proteins. Genomic PCR demonstrated that PyCESA1 contains no introns. Southern blot analysis indicated that P. yezoensis has at least three genomic sequences with high similarity to the cloned gene; two of these are pseudogenes based on analysis of amplified genomic sequences. The P. yezoensis CESA peptide sequence is most similar to cellulose synthase sequences from the oomycete Phytophthora infestans and from cyanobacteria. Comparing the CESA genes of P. yezoensis and land plants may facilitate identification of sequences that control terminal complex and cellulose microfibril morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号