首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
ABSTRACT A Tortonian to Pliocene magnetostratigraphy of the Fortuna basin supports a new chronostratigraphic framework, which is significant for the palaeogeographical and geodynamic evolution of the Eastern Betics in SE Spain.
The Neogene Fortuna basin is an elongated trough which formed over a left-lateral strike-slip zone in the Eastern Betics in the context of the convergence between the African and Iberian plates. Coeval with other basins in the Alicante–Cartagena area (Eastern Betics), rapid initial subsidence in the Fortuna basin started in the Tortonian as a result of WNW–ESE stretching. This led to transgression and deposition of marine sediments over extensive areas in open connection with the neighbouring basins. Since the late Tortonian, N–S to NW–SE compression led to inversion of older extensional structures. The transpressional tectonics along the NE–SW-trending Alhama de Murcia Fault is related to the rising of a structural high which isolated the Fortuna basin from the open Mediterranean basin. The progression of basin confinement is indicated by the development of restricted marine environments and deposition of evaporites (7.8–7.6 Ma). The new basin configuration favoured rapid sediment accumulation and marine regression. The basin subsided rapidly during the Messinian, leading to the accumulation of thick continental sequences. During the Pliocene, left-lateral shear along the Alhama de Murcia Fault caused synsedimentary folding, vertical axis block rotations and uplift of both the basin and its margins. The overall sedimentary evolution of the Fortuna basin can be regarded as a developing pull-apart basin controlled by NE–SW strike-slip faults. This resembles the evolution that has taken place in some areas of the Eastern Alboran basin since the late Tortonian.  相似文献   

2.
The quantitative study of subsidence in the Granada basin, using decompaction and backstripping techniques, and contemporaneous relief development in the surrounding areas, especially in the Sierra Nevada, provides a good case example of the development of an intramontane basin. In the Granada basin, according to the interpretation of the seismic profiles and results of the backstripping analysis, subsidence and sedimentation rates were at a maximum in the late Tortonian and decreased progressively; meanwhile, the neighbouring areas were uplifted forming important relief. Chronostratigraphical revisions of the marine sediments show that the marine incursion that deposited sediments in the Granada basin lasted only 1.3 Ma, between 8.5 and 7.2 Ma. The gradual retreat of the sea in the Granada basin is not attributable to global eustatic fluctuations, but rather to uplift in the Sierra Nevada and its adjacent areas. From latest Tortonian to early Messinian times, the region became continental and the Granada basin acquired its present physiography and was differentiated as such. From the late Tortonian onwards, NNW–SSE compression combined with ENE–WSW extension affected the cordillera. In the Granada basin, extension controlled fault movements. There are two well-defined fault sets: the first trends 70°N–90°E, with low angle faults (less than 30°) dipping towards the north and south, defining the subsiding areas which have approximately E–W direction; whereas the second set has a NW–SE direction, and cuts and displaces the previous ones, defining the main subsiding areas in the eastern part of the basin. The reinterpretation of seismic profiles reveals that the subsiding axes within the Granada basin persisted from the Tortonian to the present because of continued displacements of the main faults.  相似文献   

3.
The Alhama de Murcia and Crevillente faults in the Betic Cordillera of southeast Spain form part of a network of prominent faults, bounding several of the late Tertiary and Quaternary intermontane basins. Current tectonic interpretations of these basins vary from late‐orogenic extensional structures to a pull‐apart origin associated with strike–slip movements along these prominent faults. A strike–slip origin of the basins, however, seems at variance both with recent structural studies of the underlying Betic basement and with the overall basin and fault geometry. We studied the structure and kinematics of the Alhama de Murcia and Crevillente faults as well as the internal structure of the late Miocene basin sediments, to elucidate possible relationships between the prominent faults and the adjacent basins. The structural data lead to the inevitable conclusion that the late Miocene basins developed as genuinely extensional basins, presumably associated with the thinning and exhumation of the underlying basement at that time. During the late Miocene, neither the Crevillente fault nor the Alhama de Murcia fault acted as strike–slip faults controlling basin development. Instead, parts of the Alhama de Murcia fault initiated as extensional normal faults, and reactivated as contraction faults during the latest Miocene–early Pliocene in response to continued African–European plate convergence. Both prominent faults presently act as reverse faults with a movement sense towards the southeast, which is clearly at variance with the commonly inferred dextral or sinistral strike–slip motions on these faults. We argue that the prominent faults form part of a larger scale zone of post‐Messinian shortening made up of SSE‐ and NNW‐directed reverse faults and NE to ENE‐trending folds including thrust‐related fault‐bend folds and fault‐propagation folds, transected and displaced by, respectively, WNW‐ and NNE‐trending, dextral and sinistral strike–slip (tear or transfer) faults.  相似文献   

4.
《Basin Research》2018,30(Z1):363-381
Inversion of pre‐existing extensional fault systems is common in rift systems, back‐arc basins and passive margins. It can significantly influence the development of structural traps in hydrocarbon basins. The analogue models of domino‐style basement fault systems shown in this paper produced, on extension, characteristic hangingwall growth stratal wedges that, when contracted and inverted, formed classic inversion harpoon geometries and asymmetric hangingwall contractional fault‐propagation folds. Segmented footwall shortcut faults formed as the basement faults were progressively back‐rotated and steepened. The pre‐existing extensional fault architectures, basement fault geometries and the relative hangingwall and footwall block rotations exerted fundamental controls on the inversion styles. Digital image correlation (DIC) strain monitoring illustrated complex vertical fault segmentation and linkage during inversion as the major faults were reactivated and strain was progressively transferred onto footwall shortcut faults. Hangingwall deformation during inversion was dominated by significant back‐rotation as the inversion progressed. The mechanical stratigraphy of the cover sequences strongly influenced the fold and fault evolution of the reactivated fault systems. The implications of the experimental results for the interpretation and analysis of inversion structures are discussed and are compared with natural examples of inverted basement‐involved extensional faults observed in seismic datasets.  相似文献   

5.
A comprehensive interpretation of single and multichannel seismic reflection profiles integrated with biostratigraphical data and log information from nearby DSDP and ODP wells has been used to constrain the late Messinian to Quaternary basin evolution of the central part of the Alboran Sea Basin. We found that deformation is heterogeneously distributed in space and time and that three major shortening phases have affected the basin as a result of convergence between the Eurasian and African plates. During the Messinian salinity crisis, significant erosion and local subsidence resulted in the formation of small, isolated, basins with shallow marine and lacustrine sedimentation. The first shortening event occurred during the Early Pliocene (ca. 5.33–4.57 Ma) along the Alboran Ridge. This was followed by a major transgression that widened the basin and was accompanied by increased sediment accumulation rates. The second, and main, phase of shortening on the Alboran Ridge took place during the Late Pliocene (ca. 3.28–2.59 Ma) as a result of thrusting and folding which was accompanied by a change in the Eurasian/African plate convergence vector from NW‐SE to WNW‐ESE. This phase also caused uplift of the southern basins and right‐lateral transtension along the WNW‐ENE Yusuf fault zone. Deformation along the Yusuf and Alboran ridges continued during the early Pleistocene (ca. 1.81–1.19 Ma) and appears to continue at the present day together with the active NNE‐SSW trending Al‐Idrisi strike‐slip fault. The Alboran Sea Basin is a region of complex interplay between sediment supply from the surrounding Betic and Rif mountains and tectonics in a zone of transpression between the converging African and European plates. The partitioning of the deformation since the Pliocene, and the resulting subsidence and uplift in the basin was partially controlled by the inherited pre‐Messinian basin geometry.  相似文献   

6.
Tectonic subsidence and uplift may be recorded by concomitant sedimentation, not only from decompacted accumulation curves but also from the evolving depositional environment relative to sea level at the time. In thrust belts there are two types of processes capable of generating vertical movements, each with different wavelengths and amplitudes. Regional subsidence is driven by flexural loading by the orogenic hinterland, the thrust belt and accumulated sediments of the underlying foreland lithosphere. Within this flexure, the foreland thrust belt will generate areas of local uplift, notably at the crests of thrust anticlines. In this contribution we examine how these processes have interacted to influence relative sea level as recorded by late Neogene sediments in an array of basins developed above and adjacent to the Maghrebian thrust belt of central Sicily. Two particular periods are addressed, the late Tortonian to early Messinian (Terravecchia Formation) and early to early late Pliocene. The earlier of these is characterized by a deltaic complex that formed prograding depositional geometries, migrating into perched basins. Collectively, however, these units are transgressive and migrate back towards the orogen. A depositional model is presented that links the migration of facies belts to subsidence caused by accentuated tectonic loading in the hinterland and break-back thrust sequences across the basins. We infer that a palaeobathymetric profile of underfilled sub-basins resulted and that this influenced the pattern of evaporite accumulation during Mediterranean desiccation in Messinian times. The Pliocene sediments, accumulated under renewed global sea levels, prograded towards the foreland. A waning tectonic load in the hinterland driving isostatic rebound, uplift and coastal offlap is the proposed explanation. This contribution is a case history for the depositional evolution of dominantly submarine thrust systems and their record of relative sea-level changes.  相似文献   

7.
Faulting exerts an important control upon drainage development in active extensional basins and thus helps determine the architecture of the sedimentary infill to a synrift basin. Examples of the interaction between faulting and drainage from the western United States and central Greece may be grouped into a relatively small number of classes based upon the structural position of a drainage catchment: footwall, hangingwall, fault offset and axial. Our examples illustrate the diversity of erosional effects that might arise because of variations in the spacing, orientation and segmentation of faults and their interactions. Where basement lithology is similar, footwall catchments are generally smaller, shorter and steeper than those of the hangingwall. Footwall-sourced alluvial fans and fan deltas are: generally smaller in area than those sourced from similar lithologies in the hangingwall. Wide fault offsets often give rise to large drainage catchments in the footwall. The development of axial drainage depends upon the breaching of transverse bedrock ridges by headward stream erosion or by lake overflow. Once breaching has occurred the direction of axial stream flow is controlled by the potential developed between basins of contrasting widths. Fault migration and propagation leads to the uplift, erosion and resedimentation of the sedimentary infill to formerly active basins, leading to the cutting of footwall unconformities. The outward sediment flux from structurally controlled catchments is modulated in an important way by lithology and runoff. The greatest contrasts in basement lithology arise when fault migration and propagation have occurred, such that the sedimentary fill to previously active basins is uplifted, incised and eroded by the establishment of large new drainage systems in the footwalls of younger faults. Drainage patterns in areas where faults interact can shed light on the relative timing of activity and therefore the occurrence of fault migration and propagation. Facies and palaeocurrent trends in ancient grabens may only be correctly interpreted when observations are made on a length scale of 10–20 km, comparable to that of the largest fault segments.  相似文献   

8.
In this work, we explore by means of analogue models how different basin-bounding fault geometries and thickness of a viscous layer within the otherwise brittle pre-rift sequence influence the deformation and sedimentary patterns of basins related to extension. The experimental device consists of a rigid wooden basement in the footwall to simulate a listric fault. The hangingwall consists of a sequence of pre-rift deposits, including the shallow interlayered viscous layer, and a syn-rift sequence deposited at constant intervals during extension. Two different geometries exist of listric normal faults, dip at 30 and 60° at surface. This imposes different geometries in the hangingwall anticlines and their associated sedimentary basins. A strong contrast exists between models with and without a viscous layer. With a viscous décollement, areas near the main basement fault show a wide normal drag and the hangingwall basin is gently synclinal, with dips in the fault side progressively shallowing upwards. A secondary roll-over structure appears in some of the models. Other structures are: (1) reverse faults dipping steeply towards the main fault, (2) antithetic faults in the footwall, appearing only in models with the 30° dipping fault and silicone-level thicknesses of 1 and 1.5 cm and (3) listric normal faults linked to the termination of the detachment level opposite to the main fault, with significant thickness changes in the syn-tectonic units. The experiments demonstrate the importance of detachment level in conditioning the geometry of extensional sedimentary basins and the possibility of syncline basin geometries associated with a main basement fault. Comparison with several basins with half-graben geometries containing a mid-level décollement supports the experimental results and constrains their interpretation.  相似文献   

9.
We report on new stratigraphic, palaeomagnetic and anisotropy of magnetic susceptibility (AMS) results from the Amantea basin, located on‐shore along the Tyrrhenian coast of the Calabrian Arc (Italy). The Miocene Amantea Basin formed on the top of a brittlely extended upper plate, separated from a blueschist lower plate by a low‐angle top‐to‐the‐west extensional detachment fault. The stratigraphic architecture of the basin is mainly controlled by the geometry of the detachment fault and is organized in several depositional sequences, separated by major unconformities. The first sequence (DS1) directly overlaps the basement units, and is constituted by Serravallian coarse‐grained conglomerates and sandstones. The upper boundary of this sequence is a major angular unconformity locally marked by a thick palaeosol (type 1 sequence boundary). The second depositional sequence DS2 (middle Tortonian‐early Messinian) is mainly formed by conglomerates, passing upwards to calcarenites, sandstones, claystones and diatomites. Finally, Messinian limestones and evaporites form the third depositional sequence (DS3). Our new biostratigraphic data on the Neogene deposits of the Amantea basin indicate a hiatus of 3 Ma separating sequences DS1 and DS2. The structural architecture of the basin is characterized by faulted homoclines, generally westward dipping, dissected by eastward dipping normal faults. Strike‐slip faults are also present along the margins of the intrabasinal structural highs. Several episodes of syn‐depositional tectonic activity are marked by well‐exposed progressive unconformities, folds and capped normal faults. Three main stages of extensional tectonics affected the area during Neogene‐Quaternary times: (1) Serravallian low‐angle normal faulting; (2) middle Tortonian high‐angle syn‐sedimentary normal faulting; (3) Messinian‐Quaternary high‐angle normal faulting. Extensional tectonics controlled the exhumation of high‐P/low‐T metamorphic rocks and later the foundering of the Amantea basin, with a constant WNW‐ESE stretching direction (present‐day coordinates), defined by means of structural analyses and by AMS data. Palaeomagnetic analyses performed mainly on the claystone deposits of DS1 show a post‐Serravallian clockwise rotation of the Amantea basin. The data presented in this paper constrain better the overall timing, structure and kinematics of the early stages of extensional tectonics of the southern Tyrrhenian Sea. In particular, extensional basins in the southern Tyrrhenian Sea opened during Serravallian and evolved during late Miocene. These data confirm that, at that time, the Amantea basin represented the conjugate extensional margin of the Sardinian border, and that it later drifted south‐eastward and rotated clockwise as a part of the Calabria‐Peloritani terrane.  相似文献   

10.
Models to explain alluvial system development in rift settings commonly depict fans that are sourced directly from catchments formed in newly uplifted footwalls, which leads to the development of steep-sided talus-cone fans in the actively subsiding basin depocentre. The impact of basin evolution on antecedent drainage networks orientated close to perpendicular to a rift axis, and flowing over the developing hangingwall dip slope, remains relatively poorly understood. The aim of this study is to better understand the responses to rift margin uplift and subsequent intrabasinal fault development in determining sedimentation patterns in alluvial deposits of a major antecedent drainage system. Field-acquired data from a coarse-grained alluvial syn-rift succession in the western Gulf of Corinth, Greece (sedimentological logging and mapping) has allowed analysis of the spatial distribution of facies associations, stratigraphic architectural elements and patterns of palaeoflow. During the earliest rifting phase, newly uplifted footwalls redirected a previously established fluvial system with predominantly southward drainage. Footwall uplift on the southern basin margin at an initially relatively slow rate led to the development of an overfilled basin, within which an alluvial fan prograded to the south-west, south and south-east over a hangingwall dip slope. Deposition of the alluvial system sourced from the north coincided with the establishment of small-scale alluvial fans sourced from the newly uplifted footwall in the south. Deposits of non-cohesive debris flows close to the proposed hangingwall fan apex pass gradationally downstream into predominantly bedload conglomerate deposits indicative of sedimentation via hyperconcentrated flows laden with sand- and silt-grade sediment. Subsequent normal faulting in the hangingwall resulted in the establishment of further barriers to stream drainage, blocking flow routes to the south. This culminated in the termination of sediment supply to the basin depocentre from the north, and the onset of underfilled basin conditions as signified by an associated lacustrine transgression. The evolution of the fluvial system described in this study records transitions between three possible end-member types of interaction between active rifting and antecedent drainage systems: (a) erosion through an uplifted footwall, (b) drainage diversion away from an uplifted footwall and (c) deposition over the hangingwall dip slope. The orientation of antecedent drainage pathways at a high angle to the trend of a developing rift axis, replete with intrabasinal faulting, exerts a primary control on the timing and location of development of overfilled and underfilled basin states in evolving depocentres.  相似文献   

11.
12.
We present a new lithostratigraphy and chronology for the Miocene on central Crete, in the Aegean forearc. Continuous sedimentation started at ~10.8 Ma in the E–W trending fluvio‐lacustrine Viannos Basin, formed on the hangingwall of the Cretan detachment, which separates high‐pressure (HP) metamorphic rocks from very low‐grade rocks in its hangingwall. Olistostromes including olistoliths deposited shortly before the Viannos Basin submerged into the marine Skinias Basin between 10.4 and 10.3 Ma testifies to significant nearby uplift. Uplift of the Skinias Basin between 9.7 and 9.6 Ma, followed by fragmentation along N–S and E–W striking normal faults, marks the onset of E–W arc‐parallel stretching superimposed on N–S regional Aegean extension. This process continued between 9.6 and 7.36 Ma, as manifested by tilting and subsidence of fault blocks with subsidence events centred at 9.6, 8.8, and 8.2 Ma. Wholesale subsidence of Crete occurred from 7.36 Ma until ~5 Ma, followed by Pliocene uplift and emergence. Subsidence of the Viannos Basin from 10.8 to 10.4 Ma was governed by motion along the Cretan detachment. Regional uplift at ~10.4 Ma, followed by the first reworking of HP rocks (10.4–10.3 Ma) is related to the opening and subsequent isostatic uplift of extensional windows exposing HP rocks. Activity of the Cretan detachment ceased sometime between formation of extensional windows around 10.4 Ma, and high‐angle normal faulting cross‐cutting the detachment at 9.6 Ma. The bulk of exhumation of the Cretan HP‐LT metamorphic rocks occurred between 24 and 12 Ma, before basin subsidence, and was associated with extreme thinning of the hangingwall (by factor ~10), in line with earlier inferences that the Cretan detachment can only explain a minor part of total exhumation. Previously proposed models of buyoant rise of the Cretan HP rocks along the subducting African slab provide an explanation for extension without basin subsidence.  相似文献   

13.
Studies of normal fault systems in modern extensional regimes (e.g. Basin and Range), and in exhumed, ancient rift basins (e.g. Gulf of Suez Rift) have shown a link between the evolution of fault‐related footwall topography and associated erosional drainage systems. In this study, we use 3D seismic reflection data to image the footwall crest of a gravity‐driven fault system developed during late Middle Jurassic to Early Cretaceous rifting on the Halten Terrace, offshore Mid‐Norway. This 22‐km‐long fault system lacks significant footwall uplift, with hangingwall subsidence accommodating throw accumulation on the fault system. Significant erosion has occurred along the length of the footwall crest and is defined by 96 catchments characterized by erosional channels. These erosional channels consist of small, linear systems up to 750 m long located along the front of the fault footwall. Larger, dendritic channel systems extend further back (up to 3 km normal to fault strike) into the footwall. These channels are up to 7 km long, up to 50 m deep and up to 1 km wide. Fault throw varies along strike, with greatest throw in the centre of the fault decreasing towards the fault tips; localized throw minima are interpreted to represent segment linkage points, which were breached as the fault grew. Comparison of the catchment location to the throw distribution shows that the largest catchments are in the centre of the fault and decrease in size to the fault tips. There is no link between the location of the breached segment linkage points and the location and size of the footwall catchments, suggesting that the first‐order control on footwall erosion patterns is the overall fault‐throw distribution.  相似文献   

14.
Transtensional basins are sparsely described in the literature compared with other basin types. The oblique‐divergent plate boundary in the southern Gulf of California has many transtensional basins: we have studied those on San Jose island and two other transtensional basins in the region. One major type of transtensional basin common in the southern Gulf of California region is a fault‐termination basin formed where normal faults splay off of strike‐slip faults. These basins suggest a model for transtensional fault‐termination basins that includes traits that show a hybrid nature between classic rift and strike‐slip (pull‐apart) basins. The traits include combinations of oblique, strike‐slip and normal faults with common steps and bends, buttress unconformities between the fault steps and beyond the ends of faults, a common facies pattern of terrestrial strata changing upward and away from the faults into marine strata, small fault blocks within the basin that result in complex lateral facies relations, common Gilbert deltas, dramatic termination of the margin of the basin by means of fault reorganization and boundary faults dying and an overall short basin history (few million years). Similar transtensional fault‐termination basins are present in Death Valley and other parts of the Eastern California shear zone of the western United States, northern Aegean Sea and along ancient strike‐slip faults.  相似文献   

15.
This article reports a stratigraphic and structural analysis of the Neogene‐Quaternary Valdelsa Basin (Central Italy), filled with up to 1000 m of uppermost Miocene to lower Pleistocene strata. The succession is subdivided into seven unconformity‐bounded stratigraphic units (synthems, or large‐scale depositional sequences) that include fluvio‐deltaic and shallow‐marine deposits. Structures related to basin shoulders and internal boundaries controlled the Neogene location and geometry of different depocentres. During the Tortonian‐Messinian, a buried NE‐trending high related to regional, basin‐transverse lineaments separated two adjacent sub‐basins. During the lower Pliocene, compressional displacement along NW‐trending, thrust‐related highs controlled the distribution of depocentres and dispersal of sediment. Extensional tectonics, although previously considered the dominant deformation style affecting the rear of the Northern Apennines since the late Miocene, is no longer considered a dominant control on tectono‐sedimentary development of the Valdelsa basin. Instead, the Valdelsa Basin shares features with continental hinterland basins of orogenic belts where compression, extension, and transcurrent stress fields determine a complex spatial and temporal record of accommodation and sediment supply. In the Valdelsa Basin tectonics and eustatic sea‐level fluctuations were dominant in forcing the deposition of sedimentary cycles at several scales. Zanclean and Gelasian large‐scale depositional sequences were mainly controlled by crustal shortening, whereas a eustatic signal was preferentially recorded during the Piacenzian. Smaller scale depositional sequences, common to most synthems, were controlled by orbitally forced glacio‐eustatic cycles.  相似文献   

16.
Miocene strata of the Shadow Valley Basin rest unconformably on the upper plate of the Kingston Range - Halloran Hills detachment fault system in the eastern Mojave desert, California. Basin development occurred in two broad phases that we interpret as a response to changes in footwall geometry. In southern portions of the basin, south of the Kingston Range, phase one began with near synchronous initiation of detachment faulting, volcanism and basin sedimentation shortly after 13.4 Ma. Between c. 13.4 and c. 10 Ma, concordantly bedded phase one strata were deposited onto the subsiding hangingwall of the detachment fault as it was translated 5–9 km south-westward with only limited internal deformation. Phase two (c. 10 to 8–5 Ma) is marked by extensional dismemberment of the detachment fault's upper plate along predominantly west-dipping normal faults. Phase two sediments were deposited synchronously with upper-plate normal faulting and unconformably overlie phase one deposits, displaying progressive shallowing in dip and intraformational onlap. Northern portions of the basin, in the Kingston Range, experienced a similar two-phase development compressed into a shorter interval of time. Here, phase one occurred between c. 13.4 and 12.8–12.5 (?) Ma, whereas phase two probably lasted for no more than a few 100000 years immediately prior to c. 12.4 Ma. Differences in the duration of basin development in and south of the Kingston Range apparently relate to position with respect to the detachment fault's breakaway; northern basin exposures overlie the upper plate adjacent to the breakaway (0–15 km) whereas southern basin exposures occur far from the breakaway (20–40 km). We interpret the phase one to phase two transition as recording breakup of the detachment fault's hangingwall during footwall uplift. We propose a model for supradetachment basin evolution in which early, concordantly bedded basin strata are deposited on the hangingwall as it translates intact above a weakly deforming footwall. With continuing extension, tectonic denudation along the detachment fault leads to an increasing flexural isostatic footwall response. We suggest that isostatic footwall uplift may drive internal breakup of the upper plate as the detachment fault is rotated to a shallow dip, mechanically unfavourable for simple upper-plate translation. Additionally, we argue that continuing hangingwall thinning during phase two places geometrical constraints on the timing, amount and, thus, rate of footwall uplift. Kinematically determined footwall uplift rates (0.5–4.5 mm/yr) are comparable with rates determined independently by thermochronological and geobarometric methods.  相似文献   

17.
ten Veen  & Postma 《Basin Research》1999,11(3):223-241
Six time-slice reconstructions in the form of palaeogeographical maps show the large-scale tectonic and sedimentary evolution of the Hellenic outer-arc basins in central and eastern Crete for the middle and late Miocene. The reconstructions are based on extensive field mapping and a detailed chronostratigraphy. Latest compressional features related to subduction and associated crustal thickening are poorly dated and assigned a middle Miocene age. These are possibly contemporaneous with widespread occurrence of breccia deposits all over Crete. The precise date for the onset of extension, possibly controlled by the roll-back of the subsiding African lithosphere, remains at this point a discussion. We present circumstantial evidence to place the beginning of the roll back in the middle Miocene, during the accumulation of an arc-parallel, westward-draining fluvial complex. The continental succession is transgressed steadily until it is interrupted by an important tectonic event at the boundary of the middle and late Miocene (normally seen as the onset of slab roll-back). In the earliest late Miocene a few large-sized fault blocks along arc-parallel normal faults subsided rapidly causing a deepening of the half-graben basins up to approximately 900 m. About 1 Myr later, a new N020E and N100E fault system developed fragmenting the existing half-grabens into orthogonal horst and graben structure. The development of the new fault system caused original continental regions to subside and original deep basins to emerge, which is not easy to reconcile with roll back controlled extensional processes alone. Underplating and inherited basement structure may have played here an additional role, although evidence for firm conclusions is lacking. In late Miocene times (late Tortonian, ≈7.2 Ma), the extensional outer arc basins become deformed by N075E-orientated strike-slip. The new tectonic regime begins with strong uplift along existing N100E fault zones, which developed about E–W-striking topographical highs (e.g. Central Iraklion Ridge and Anatoli anticline) in about 0.4 Myr. The strong uplift is contemporaneous with abundant landsliding observed along an important N075E fault zone crossing eastern Crete and with renewed volcanic activity of the arc. The origin of the ridges may be due to active folding related to the sinistral slip.  相似文献   

18.
ABSTRACT This study addresses the complex relationship between an evolving fault population and patterns of synrift sedimentation during the earliest stages of extension. We have used 3D seismic and well data to examine the early synrift Tarbert Formation from the Middle–Late Jurassic northern North Sea rift basin. The Tarbert Formation is of variable thickness across the study area, and thickness variations define a number of 1- to 5-km-wide depocentres bounded by normal faults. Seismic reflections diverge towards the bounding faults indicating that the faults were active contemporaneous with the deposition of the formation. Many of these faults became inactive during later Heather Formation times. The preservation of the Tarbert Formation in both footwall and hangingwall locations demonstrates that, during the earliest synrift, the rate of deposition balanced the rate of tectonic subsidence. Local space generated by hangingwall subsidence was superimposed upon accommodation generated due to a regional rise in relative sea-level. In basal Tarbert Formation times, transgression across the prerift coastal plain produced lagoons and bays, which became increasingly marine. During continued transgression, barrier islands moved landward across the drowned bays. In the southern part of our study area, shallow marine sediments are erosionally truncated by fluvial deposition. These fluvial systems were constrained by fault growth monoclines, and flowed parallel to the main faults. We illustrate that stratal architecture and facies distribution of early sedimentation is strongly influenced by the active short-lived faults. Local depocentres adjacent to fault displacement maxima focused channel stacking and allowed the aggradation of thick shoreface successions. These depocentres formed early in the rift phase are not necessarily related to Late Jurassic – Early Cretaceous depocentres developed along the major linked normal fault systems.  相似文献   

19.
In areas of broadly distributed extensional strain, the back‐tilted edges of a wider than normal horst block may create a synclinal‐horst basin. Three Neogene synclinal‐horst basins are described from the southern Rio Grande rift and southern Transition Zone of southwestern New Mexico, USA. The late Miocene–Quaternary Uvas Valley basin developed between two fault blocks that dip 6–8° toward one another. Containing a maximum of 200 m of sediment, the Uvas Valley basin has a nearly symmetrical distribution of sediment thickness and appears to have been hydrologically closed throughout its history. The Miocene Gila Wilderness synclinal‐horst basin is bordered on three sides by gently tilted (10°, 15°, 20°) fault blocks. Despite evidence of an axial drainage that may have exited the northern edge of the basin, 200–300 m of sediment accumulated in the basin, probably as a result of high sediment yields from the large, high‐relief catchments. The Jornada del Muerto synclinal‐horst basin is positioned between the east‐tilted Caballo and west‐tilted San Andres fault blocks. Despite uplift and probable tilting of the adjacent fault blocks in the latest Oligocene and Miocene time, sediment was transported off the horst and deposited in an adjacent basin to the south. Sediment only began to accumulate in the Jornada del Muerto basin in Pliocene and Quaternary time, when an east‐dipping normal fault along the axis of the syncline created a small half graben. Overall, synclinal‐horst basins are rare, because horsts wide enough to develop broad synclines are uncommon in extensional terrains. Synclinal‐horst basins may be most common along the margins of extensional terrains, where thicker, colder crust results in wider fault spacing.  相似文献   

20.
The China–Mongolia border region contains many late Mesozoic extensional basins that together constitute a regionally extensive basin system. Individual basins within the system are internally composed of a family of sub‐basins filled with relatively thin sedimentary piles mostly less than 5 km in thickness. There are two types of sub‐basins within the basins, failed and combined, respectively. The failed sub‐basins are those that failed to continue developing with time. In contrast, the combined ones are those that succeeded in growing by coalescing adjacent previously isolated sub‐basins. Thus, a combined sub‐basin is bounded by a linked through‐going normal fault that usually displays a corrugated trace on map view and a shallower dip on cross‐section. Along‐strike existence of discrete depocenters and alternation of sedimentary wedges of different types validate the linkage origin of combined sub‐basins. Localized high‐strain extension resulted in large‐amount displacement on linked faults, but contemporaneously brought about the cessation of some isolated fault segments and the formation of corresponding failed sub‐basins in intervening areas between active linked faults. Some combined sub‐basins might have evolved into supradetachment basins through time, concurrent with rapid denudation of footwall rocks and formation of metamorphic core complexes in places. A tectonic scenario of the broad basin system can be envisioned as an evolution from early‐stage distributed isolated sub‐basins to late‐stage focused combined or/and supradetachment sub‐basins bounded by linked faults, accompanied by synchronous cessation of some early‐formed sub‐basins. Initiation of the late Mesozoic extension is believed to result from gravitational collapse of the crust that had been overthickened shortly prior to the extension. Compression, arising from collision of Siberia and the amalgamated North China–Mongolia block along the Mongol–Okhotsk suture in the time interval from the Middle to Late Jurassic, led to significant shortening and thickening over a broad area and subsequent extensional collapse. Pre‐ and syn‐extensional voluminous magmatism must have considerably reduced the viscosity of the overthickened crust, thereby not only facilitating the gravitational collapse but enabling the lower‐middle crust to flow as well. Flow of a thicker crustal layer is assumed to have occurred coevally with upper‐crustal stretching so as to diminish the potential contrast of crustal thickness by repositioning materials from less extended to highly extending regions. Lateral middle‐ and lower‐crustal flow and its resultant upward push upon the upper crust provide a satisfying explanation for a number of unusual phenomena, such as supracrustal activity of the extension, absence or negligibleness of postrift subsidence of the basin system, less reduction of crustal thickness after extension, and non‐compression‐induced basin inversion, all of which have been paradoxical in the previous study of the late Mesozoic basin tectonics in the China–Mongolia border region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号