首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 78 毫秒
1.
基于高斯混沌变异和精英学习的自适应多目标粒子群算法   总被引:1,自引:0,他引:1  
韩敏  何泳 《控制与决策》2016,31(8):1372-1378

为平衡多目标粒子群的全局和局部搜索能力, 提出一种基于高斯混沌变异和精英学习的自适应多目标粒子群算法. 首先, 提出一种新的种群收敛状态检测方法, 自适应调整惯性权重和学习因子的值, 以达到探索和开发的最佳平衡. 然后, 当检测到种群收敛停滞时, 采用一种带有高斯函数和混沌特性的变异算子协助种群跳出局部最优, 以增强全局搜索能力. 最后, 外部档案中的精英解相互学习, 增强算法的局部搜索能力. 在多目标标准测试问题上的仿真结果表明了所提出算法的有效性.

  相似文献   

2.
自适应动态重组多目标粒子群优化算法   总被引:1,自引:0,他引:1  

提出一种自适应动态重组粒子群优化算法. 该算法采用凝聚的层次聚类算法, 将种群分成若干个子群体, 用一个精英集对非支配解进行存储; 根据贡献度和多样性, 对各子群体的粒子和整个种群进行自适应动态重组; 同时引入扰动算子对精英集存储的非支配解进行扰动, 实现对精英集进行动态调整. 利用具有不同特点的测试函数进行验证并与同类算法相比较, 结果表明, 所提出的算法可加快收敛速度, 提高种群的可进化能力.

  相似文献   

3.

如何在众多非劣解中为决策者推荐一个合理的方案是使用多目标粒子群算法(MOPSO) 所面临的问题. 为此, 将逼近理想解的排序方法(TOPSIS 策略) 引入到算法中. 为了提高求解精度和均匀性, 还提出了基于Pbest 的变异策略和改进的?? 邻近距离策略. 测试结论显示, 仅使用TOPSIS 策略确定Gbest 的算法, 求解精度虽好, 但均匀性较差, 而包含所有改进策略的算法在精度和均匀性方面都更优, 并且能够按照TOPSIS 方法在非劣解集中找到一个适合向决策者推荐的“理想” 方案.

  相似文献   

4.

提出一种三态协调搜索多目标粒子群优化算法. 该算法提出的三态指导粒子选择策略可以很好地协调算法的局部和全局搜索能力, 且算法改进了传统的外部档案保存机制, 同时引入3 种突变因子, 使获得的非劣解具有更好的分散性. 通过对标准测试函数的求解, 并与其他经典多目标优化算法比较, 表明了新算法在收敛性和多样性方面均有较大的优越性. 最后分析了区域划分系数对所提出算法性能的影响.

  相似文献   

5.
不确定可靠性优化问题的多目标粒子群优化算法   总被引:1,自引:0,他引:1  
章恩泽  陈庆伟 《控制与决策》2015,30(9):1701-1705

针对元件可靠性为区间值的系统可靠性优化问题, 提出一种区间多目标粒子群优化方法. 首先, 建立问题的区间多目标优化模型; 然后, 利用粒子群算法优化该模型, 定义一种不精确Pareto 支配关系, 并给出编码、约束处理、外部存储器更新、领导粒子选择等关键问题的解决方法; 最后, 将该方法应用于可靠性优化问题实例, 验证了方法的有效性.

  相似文献   

6.
针对约束边界粒子在边界区域搜索能力不足的问题,提出一种基于自适应进化学习的约束多目标粒子群优化算法。该算法根据不符合约束条件粒子的约束违反程度,修正优化算法的进化学习公式,提高算法在约束边界区域的搜索能力;通过引入一种基于拥挤距离的Pareto最优解分布性动态维护策略,在不增加算法复杂度的前提下改进Pareto前沿的分布性。实验结果表明,所提出的算法可以获得具有更好收敛性、分布性和多样性的Pareto前沿。  相似文献   

7.

针对粒子群优化算法(PSO) 在处理高维复杂函数时容易陷入局部极值、收敛速度慢的缺陷, 从系统的认知分析过程和角度出发, 提出一种基于诺兰模型(NM) 思想的改进PSO 算法. 该算法在Tent 混沌映射选择的参数的基础上, 结合NM信息融合和协调的思想, 在速度更新过程中增加均衡项, 并设计粒子群的欧氏距离指数以防止早熟, 从而实现对粒子的自动调整、保证多样性和提高算法的全局搜索能力. 最后, 运用典型函数对所提出算法进行测试, 并与最新相关算法进行比较, 结果表明, 所提出算法在全局搜索能力、效率和稳定性方面均具有明显的优势.

  相似文献   

8.

提出一种基于空间自适应划分的多目标优化算法. 为了增强种群的收敛性和多样性, 多维搜索空间被划分成多个网格, 网格内的粒子通过共享“引导”粒子的经验信息调整自身的速度和位置, 并引入年龄观测器实时记录引导粒子对Pareto 解集所做的贡献, 及时更新引导粒子, 以增强算法的全局搜索能力. 对多目标测试函数以及环境经济调度问题进行了仿真实验, 实验结果表明, 所提出算法能对解空间进行更加全面、充分的探索, 快速找到一组分布具有较好的逼近性、宽广性和均匀性的最优解集合.

  相似文献   

9.
王经卓  樊纪山 《控制与决策》2015,30(7):1291-1297
提出一种空间联合概率数据关联的多目标粒子群优化(DS-MOPSO)算法。采用正态分布确保初始样本均匀分布,通过采用拥挤距离和先验概率采样确立外部归档中非支配解的拥挤度来保持解的多样性;采用Sigma方法作为选择精英粒子策略寻找全局最优解;利用空间联合概率数据关联动态生成每个粒子的惯性权值,增强粒子的搜索区域,防止算法陷入局部最优。仿真实验结果表明,采用所提出的算法所得到的Pareto解集具有很好的收敛性和多样性。  相似文献   

10.
自适应进化多目标粒子群优化算法   总被引:8,自引:0,他引:8  
提出一种自适应进化粒子群优化算法以求解多目标优化问题.采用非支配排序策略和动态加权法选择最优粒子,引导种群飞行,提高Pareto解的多样性.采用动态惯性权重,提高其全局寻优能力.当种群的寻优能力减弱时,采用变异操作以引导粒子群跳出局部最优.通过ZDT1~ZDT4 基准函数验证,该算法能够在保持优化解多样性的同时实现较好的收敛性.与其他多目标进化算法和多目标粒子群优化算法相比,该算法具有较好的性能.  相似文献   

11.
加速收敛的粒子群优化算法   总被引:5,自引:0,他引:5  
任子晖  王坚 《控制与决策》2011,26(2):201-206
在基本粒子群优化算法的理论分析的基础上,提出一种加速收敛的粒子群优化算法,并从理论上证明了该算法的快速收敛性,同时对该算法中的参数进行了优化.为了防止其在快速收敛的同时陷入局部最优,采用依赖部分最差粒子信息的变异操作.最后通过与其他几种经典粒子群优化算法的性能比较,表明了该算法的高效和稳健,且明显优于现有的几种经典的粒子群算法.  相似文献   

12.
杨宁  霍炬  杨明 《控制与决策》2016,31(5):907-912
为提高多目标优化算法的收敛性和多样性,提出一种基于多层次信息交互的多目标粒子群优化算法.在该算法中,整个优化过程可分为标准粒子群优化层、粒子进化与学习层和档案信息交换层3个层次.粒子进化与学习层保证了每次迭代都能得到更好的粒子位置;档案信息交换层可以提供更好的全局最优.优化算法各个层次之间通过信息交互,共同提高算法的收敛性和多样性.与NSGA-Ⅱ和MOPSO算法的对比分析表明,所提出算法具有良好的性能,能够有效解决多目标优化问题.  相似文献   

13.
粒子群优化算法参数少,寻优速度快,但其寻优效率低且在寻优后期易早熟收敛。为改善其寻优性能,在标准粒子群优化算法中,通过引入混沌映射和自适应变异策略,提出具有自适应变异的混沌粒子群优化(ACPSO)算法,以增强种群的全局寻优性能和局部寻优效率。六个基准测试函数的仿真结果表明,ACPSO算法比已有的五个算法具有更好的寻优能力。  相似文献   

14.
针对模糊c均值聚类算法自适应性不强、易陷入局部极小值及聚类效果不理想等问题,提出一种基于自适应混沌粒子群的聚类算法。对粒子群的加速因子进行动态设置,使粒子搜索机制具有自适应调节的功能;利用混沌扰动优化,使种群的多样性和全局搜索能力得到提高,利用边界缓冲墙对越界粒子进行处理,避免正负粒子飞越边界的干扰。选取 UCI机器学习库中的4种数据样本集进行测试,测试结果表明,该算法具有良好的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号