首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Previous studies using light microscopy have demonstrated that micromachined grooved surfaces inhibit epithelial (E) downgrowth and affect cell orientation at the tissue/implant interface. This study investigates the ultrastructure of the epithelial and connective-tissue attachment to titanium-coated micromachined grooved, as well as smooth control, implant surfaces. V-shaped grooves, 3, 10, or 22 microns deep, were produced in silicon wafers by micromachining, replicated in epoxy resin, and coated with 50-nm titanium. These grooved, as well as smooth, titanium-coated surfaces were implanted percutaneously in the parietal area of rats and after 7 days processed for electron microscopy. The tissue preparation technique used in this study enabled us to obtain ultrathin sections with few artifacts from the area of epithelial and connective-tissue attachment. The histological observations demonstrated that E cells closely attached to, and interdigitated with, the 3-microns and 10-microns grooves. In contrast, E cells were not found inside the 22-microns-deep grooves and made contact only with the flat ridges between the grooves. As a general rule, fibroblasts (F) were oriented parallel to the long axis of the implants and produced a connective tissue capsule with 3-microns and 10-microns-deep grooved surfaces as well as smooth surfaces. On the 22-microns-deep grooved surfaces, however, F inserted obliquely into the implant. The attachment of F to the titanium surface was mediated by two zones; a thin (approximately 20 nm), amorphous, electron dense zone immediately contacting the titanium surface, and a fine fibrillar zone extending from the amorphous zone to the cell membrane. As oblique orientation of F has been associated with the inhibition of epithelial downgrowth, micromachined grooved surfaces of appropriate dimensions have the potential to improve the performance of percutaneous devices.  相似文献   

2.
This article reports that surface modification of poly(dimethylsiloxane) (PDMS) influences fibronectin (Fn) adsorption and enhances cell attachment. Controlled adsorption of Fn on chemically activated polymer substrates is known to influence cellular function. Thin films of PDMS were spun cast on silicon wafers to obtain homogeneous and molecularly smooth surfaces. The films were made hydrophilic by exposure to ultraviolet ozone activation (PDMS*). The films then were characterized by contact angle goniometry, ellipsometry, atomic force microscopy (AFM), Rutherford backscattering spectrometry and X-ray photoelectron spectroscopy. Contact angle measurements indicated higher hydrophobicity of the nonactivated PDMS substrates than PDMS*. AFM scans of the substrates indicated higher surface roughness of PDMS* (Ra = 0.55 nm) than PDMS (Ra = 0.25 nm). Although Fn surface density (Gamma) was slightly higher on PDMS than on PDMS*, due to hydrophobic interactions between substrate and Fn, cell function was greatly enhanced on the Fn-coated PDMS* (PDMS*-Fn) than on PDMS (PDMS-Fn). Higher attachment of MC3T3-E1 osteoblast-like cells was observed on PDMS*-Fn than on PDMS-Fn. Moreover, cell spreading and cytoskeleton organization after 72 h was clearly favored on the Fn-coated PDMS* surfaces.  相似文献   

3.
The effects of a grooved titanium-coated substratum on epithelial (E) cell behavior were studied in vitro and in vivo. V-shaped grooves, 10 microns deep, were produced in silicon wafers by micromachining, a process which was developed for the fabrication of microelectronic components. The grooved substrata were replicated in epoxy resin and coated with 50 nm of titanium. More E cells were found attached to the grooved titanium surfaces than to adjacent smooth surfaces. In comparison to the smooth surfaces where clusters of E cells were randomly oriented, on the grooved surfaces, clusters of E cells were markedly oriented along the long axis of grooves. Grooved and smooth titanium-coated epoxy implants were placed percutaneously in the parietal area of rats. Electron and light microscopic observations indicated that E cells were tightly attached to the implant surfaces and this attachment is through basal lamina-like and hemidesmosome-like structures. In the grooved portion of the implant, E cells interdigitated into the grooves and had rounded nuclei. Histomorphometric measurements indicated that there was a shorter length of epithelial attachment, longer length of connective tissue attachment, and less recession in the grooved, compared to the smooth portion of implants after 7 and 10 days. These results indicate that horizontal grooves produced by micromachining can significantly impede epithelial downgrowth on titanium-coated epoxy implants.  相似文献   

4.
本文综述了基于生物微机电系统 (BioMEMS) 微柱矩阵的细胞牵引力测量方法。细胞牵引力对于许多生物学过程非常关键,决定着许多细胞功能,包括细胞迁移、细胞外基质构建、信号传导等。细胞通过纳牛顿量级的牵引力使细胞外基质局部变形来探测其机械顺从性。精确测量细胞牵引力大小及分布对细胞生物学、组织工程等生物医学研究具有重要意义。BioMEMS 的进步使高深宽比聚二甲基硅氧烷 (PDMS) 微柱矩阵被开发出来作为传感器用来探测细胞纳牛力学及在体外研究细胞的机械性质。细胞贴附在微柱矩阵顶端,并且在多个柱顶端间延展迁移,这个过程会造成微柱发生如垂直悬臂梁般的弯曲形变。采用这种致密、垂直、离散微柱矩阵结构替代传统测量的连续介质,通过对微柱形变的显微图像处理,细胞牵引力可以被直接定性定量测量,精度可以达到数十 nN/?m 量级。首先简要总结了传统细胞牵引力测量方法,接下来着重于基于 BioMEMS 微柱矩阵的测量方法,论述了其原理、制作工艺、表面处理及细胞实验等。最后对微柱矩阵结构的坍塌问题进行了讨论。  相似文献   

5.
Surface topography is one of the most important factors influencing the attachment and spreading of cells. In the present study, layer-by-layer assembled titanium dioxide (TiO2) nanoparticle thin films were chosen for attachment, proliferation and spreading studies on mouse mesenchymal stem cells (MSC). Increasing surface roughness was observed with increasing number of layer-by-layer assembled TiO2 thin films. Four layer TiO2 thin film showed higher number of attached cells than a one layer thin film and control surfaces. MSCs experienced no cytotoxic effects after culture on the TiO2 coated substrates as observed from the cytotoxicity tests. Cell spreading, visualized with scanning electron microscopy, showed a faster rate of spreading on a rougher surface. Cells on a four-layer substrate, at 12 h showed complete spreading, where as most of the cells on a control surface and a one-layer surface, at 24 h, retained a rounded morphology. In conclusion, TiO2 nanoparticle thin films were successfully assembled in alternation with polyelectrolytes and in-vitro studies with MSC showed an increase in the attachment and faster spreading of cells on rougher surfaces.  相似文献   

6.
The osteoconductive property of titanium (Ti) surfaces is important in orthopedic and dental implant devices. Surface modifications of Ti have been proposed to further improve osseointegration. In this study, three different materials, silicon (Si), silicon oxide (SiO(2)), and titanium oxide (TiO(2)), were used to construct nanofibers for surface coating of Ti alloy Ti-6Al-4 V (Ti alloy). MC3T3-E1 osteoprogenitor cells were seeded on nanofiber-coated discs and cultured for 42 days. DNA, alkaline phosphatase, osteocalcin, and mineralization nodules were measured using PicoGreen, enzyme-linked immunosorbent assay, and calcein blue staining to detect the attachment, proliferation, differentiation, and mineralization of MC3T3-E1 cells, respectively. The results demonstrated that the initial cell attachments on nanofiber-coated discs were significantly lower, although cell proliferation on Si and SiO(2) nanofiber-coated discs was better than on Ti alloy surfaces. TiO(2) nanofibers facilitated a higher cellular differentiation capacity than Ti alloy and tissue culture-treated polystyrene surfaces. Thus, surface modification using nanofibers of various materials can alter the attachment, proliferation, and differentiation of osteoprogenitor cells in vitro.  相似文献   

7.
Bacterial infection of biomaterials represents one of the most important reasons for the failure of transdermal or implanted medical devices. The first and least understood step in biomaterial-associated infections is the initial interaction between bacteria and a surface. This initial interaction can be either attractive or repulsive depending on the physiochemical nature of the biological and synthetic surfaces, as well as the properties of the interstitial fluid. We have shown that atomic force microscopy (AFM) can be employed as an exquisitely sensitive and versatile tool for quantifying the interaction between bacteria and surfaces in physiological solutions. The forces of interaction between an AFM cantilever tip and a uniform lawn of bacteria immobilized on glass were determined. By comparing the interactions of cantilever tips with lawns of isogenic E. coli strains carrying genetic lesions that alter their cell surface composition, it was possible to evaluate the effect of macromolecules such as lipopolysaccharide and capsular polysaccharide on the adhesion process. Mutations that result in the synthesis of truncated lipopolysaccharide or in the overproduction of the negatively charged capsular polysaccharide colanic acid render the interaction of the bacteria with the AFM tip unfavorable due to increased electrostatic repulsion. Furthermore, AFM could be used to evaluate the adhesion of bacteria onto commercially relevant biomaterials. In one approach, micron-size polystyrene beads were attached to AFM tips which were then used to measure forces. Unfortunately, this approach is limited by the meager number of materials manufactured as beads of a size suitable for AFM measurements. As an alternative approach, AFM cantilever tips were coated with a confluent layer of bacteria and used to probe planar surfaces. In this configuration. AFM could be employed to measure the force of interaction between virtually any bacterium and surface of interest.  相似文献   

8.
A major consideration in designing dental implants is the creation of a surface that provides strong attachment between the implant and bone, connective tissue, or epithelium. In addition, it is important to inhibit the adherence of oral bacteria on titanium surfaces exposed to the oral cavity to maintain plaque-free implants. Previous in vitro studies have shown that titanium implant surfaces coated with titanium nitride (TiN) reduced bacterial colonization compared to other clinically used implant surfaces. The aim of the present study was to examine the support of fibroblast growth by a TiN surface that has antimicrobial characteristics. Mouse fibroblasts were cultured on smooth titanium discs that were either magnetron-sputtered with a thin layer of titanium nitride, thermal oxidized, or modified with laser radiation (using a Nd-YAG laser). The resulting surface topography was examined by scanning electron microscopy (SEM), and surface roughness was estimated using a two-dimensional contact stylus profilometer. A protein assay (BCA assay) and a colorimetric assay to examine fibroblast metabolism (MTT) were used. Cellular morphology and cell spreading were analyzed using SEM and fluorescence microscopy. Fibroblasts on oxidized titanium surfaces showed a more spherical shape, whereas cells on laser-treated titanium and on TiN appeared intimately adherent to the surface. The MTT activity and total protein were significantly increased in fibroblasts cultured on titanium surfaces coated with TiN compared to all other surface modifications tested. This study suggests that a titanium nitride coating might be suitable to support tissue growth on implant surfaces.  相似文献   

9.
Chitosan, a derivative of the bio-polysaccharide chitin, has shown promise as a bioactive material for implant, tissue engineering and drug-delivery applications. The aim of this study was to evaluate the contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. Rough ground titanium (Ti) coupons were solution cast and bonded to 91.2% de-acetylated chitosan (1 wt% chitosan in 0.2% acetic acid) coatings via silane reactions. Non-coated Ti was used as controls. Samples were sterilized by ethylene oxide gas prior to experiments. Contact angles on all surfaces were measured using water. 5 x 10(4) cells/ml of ATCC CRL 1486 human embryonic palatal mesenchyme (HEPM) cells, an osteoblast precursor cell line, were used for the cell attachment study. SEM evaluations were performed on cells attached to all surfaces. Contact angles and cell attachment on all surfaces were statistically analyzed using ANOVA. The chitosan-coated surfaces (76.4 +/- 5.1 degrees) exhibited a significantly greater contact angle compared to control Ti surfaces (32.2 +/- 6.1 degrees). Similarly, chitosan-coated surfaces exhibited significantly greater (P < 0.001) albumin adsorption, fibronectin adsorption and cell attachment, as compared to the control Ti surfaces. Coating chitosan on Ti surfaces decreased the wettability of the Ti, but increased protein adsorption and cell attachment. Increased protein absorption and cell attachment on the chitosan-coated Ti may be of benefit in enhancing osseointegration of implant devices.  相似文献   

10.
The adhesion, orientation and proliferation of human gingival epithelial cells and human maxillar osteoblast-like cells in primary and secondary culture were studied on glossy polished, sandblasted and plasma-sprayed titanium surfaces by scanning electron microscopy and in thin sections. The primary cultured explants of human gingival epithelial cells attached, spread and proliferated on all titanium surfaces with the greatest extension on the polished and the smallest extension on plasma-sprayed surfaces. In secondary suspension cultures of gingival keratinocytes, attachment spreading and growth was only observed on polished and plasma-sprayed surfaces, but not on sandblasted surfaces. Moreover, the attachment of these cells depended on the seeding concentration as well as on the coating with fetal calf serum. Cells on polished surfaces developed an extremely flat cell shape, but on sandblasted and plasma-sprayed surfaces a more cuboidal shape. In contrast human maxillar osteoblasts seeded as secondary suspension cultures attached very well to all three differently textured titanium surfaces and showed identical growth patterns independent of the titanium surface structure. These findings suggest that cell morphology, orientation, proliferation and adhesion of human gingival epithelial cells in primary or secondary culture are dependent on the texture of the titanium surface whereas no such differences were observed for maxillar osteoblast-like cells. In conclusion, the soft tissue integration and response is more influenced by the surface texture than the process of osseointegration.  相似文献   

11.
Chitosan, a derivative of the bio-polysaccharide chitin, has shown promise as a bioactive material for implant, tissue engineering and drug-delivery applications. The aim of this study was to evaluate the contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. Rough ground titanium (Ti) coupons were solution cast and bonded to 91.2% de-acetylated chitosan (1 wt% chitosan in 0.2% acetic acid) coatings via silane reactions. Non-coated Ti was used as controls. Samples were sterilized by ethylene oxide gas prior to experiments. Contact angles on all surfaces were measured using water. 5 × 104 cells/ml of ATCC CRL 1486 human embryonic palatal mesenchyme (HEPM) cells, an osteoblast precursor cell line, were used for the cell attachment study. SEM evaluations were performed on cells attached to all surfaces. Contact angles and cell attachment on all surfaces were statistically analyzed using ANOVA. The chitosan-coated surfaces (76.4 ± 5.1°) exhibited a significantly greater contact angle compared to control Ti surfaces (32.2±6.1°). Similarly, chitosan-coated surfaces exhibited significantly greater (P < 0.001) albumin adsorption, fibronectin adsorption and cell attachment, as compared to the control Ti surfaces. Coating chitosan on Ti surfaces decreased the wettability of the Ti, but increased protein adsorption and cell attachment. Increased protein absorption and cell attachment on the chitosan-coated Ti may be of benefit in enhancing osseointegration of implant devices.  相似文献   

12.
Surface topography and (bio)chemistry are key factors in determining cell response to an implant. We investigated cell adhesion and spreading patterns of epithelial cells, fibroblasts and osteoblasts on biomimetically modified, smooth and rough titanium surfaces. The RGD bioactive peptide sequence was immobilized via a non-fouling poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) molecular assembly system, which allowed exploitation of specific cell-peptide interactions even in the presence of serum. As control surfaces, bare titanium and bio-inactive surfaces (scrambled RDG and unfunctionalized PLL-g-PEG) were used. Our findings demonstrated that surface topography and chemistry directly influenced the attachment and morphology of all cell types tested. In general, an increase in cell number and more spread cells were observed on bioactive substrates (containing RGD) compared to bio-inactive surfaces. More fibroblasts were present on smooth than on rough topographies, whereas for osteoblasts the opposite tendency was observed. Epithelial cell attachment did not follow any regular pattern. Footprint areas for all cell types were significantly reduced on rough compared to smooth surfaces. Osteoblast attachment and footprint areas increased with increasing RGD-peptide surface density. However, no synergy (interaction) between RGD-peptide surface density and surface topography was observed for osteoblasts neither in terms of attachment nor footprint area.  相似文献   

13.
From previous studies, we know that calcium phosphate (CaP) coated implants stimulate bone formation compared to uncoated implants. Nevertheless, the mechanism by which substrate surface characteristics affect cell function is unclear. In this study, we examined the initial interaction (30 min to 24 h) of U2OS cells with titanium substrates with or without a CaP coating. The effect of substrate roughness was also studied. When cell attachment was studied, we found that cells attached more readily to rough than to smooth surfaces. Also, more cells attached to the uncoated than to the CaP coated surface. After 24 h, cell numbers were similar for all substrate surfaces. Further, cells spread to a larger area on noncoated titanium than on the CaP coated substrates. At 24 h, the sequence of cell size was smooth titanium > rough titanium > CaP coated titanium. Shape measurements showed differences in cell shape between the cells on the different materials only at 7 h, not at different culture times. Cells expressed alpha2, alpha3, alpha5, alpha6, alphav, and beta1 subunits. Expression of alpha1, alpha4, alphavbeta3, beta3, beta4, and beta7 was extremely low or was not found.The beta1 integrin expression was higher on the coated than on the noncoated titanium at 3 h, but not on the other studied times. Expression of alpha2, alpha5, alpha6, and alphav expression was found to be upregulated at 24 h compared to earlier culture times on coated titanium, but not on uncoated titanium substrates. From this we conclude that the surface characteristics of a material (roughness and composition) can affect the initial interaction of cells with the material.  相似文献   

14.
Nanotopographical guidance of C6 glioma cell alignment and oriented growth   总被引:1,自引:0,他引:1  
Zhu B  Zhang Q  Lu Q  Xu Y  Yin J  Hu J  Wang Z 《Biomaterials》2004,25(18):4215-4223
The surface properties of the extracellular matrix play vital roles in cellular behavior such as adhesion, spreading, migration, proliferation and differentiation. While cell attachment and adhesion onto surfaces are mainly mediated by surface molecular interaction, cell morphology and orientation are significantly affected by the topographical cues of the substrate. We reported here the alignment of C6 glioma cells on polystyrene (PS) substrate containing periodic nanotopography. The ridge/groove type structures (210 nm in periodicity, and 30-40 nm in depth) were generated on polystyrene surface using Nd:YAG polarized laser radiation at 266 nm. The cultured cells were shown to align strictly along the direction of the ridges/grooves. And there were distinctive features such as elongated morphology and asymmetrical cell surface extensions, revealed by confocal laser scanning microscopy (CLSM), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The results indicated that ordered and continuous nanostructures on substrates can pattern cell, and guide cell alignment and oriented growth along definite directions. The possible mechanism and significance of these observations were also discussed.  相似文献   

15.
Sol-gel thin films of hydroxyapatite (HA) and titania (TiO(2)) have received a great deal of attention in the area of bioactive surface modification of titanium (Ti) implants. Sol-gel coatings were developed on Ti substrates of pure HA and TiO(2) and two composite forms, HA+10% TiO(2) and HA+20% TiO(2), and the biological properties of the coatings were evaluated. All the coating layers exhibited thin and homogeneous structures and phase-pure compositions (either HA or TiO(2)). Primary human osteoblast cells showed good attachment, spreading and proliferation on all the sol-gel coated surfaces, with enhanced cell numbers on all the coated surfaces relative to uncoated Ti control at day 1, as observed by MTT assay and scanning electron microscopy. Cell attachment rates were also enhanced on the pure HA coating relative to control Ti. The pure HA and HA+10% TiO(2) composite coating furthermore enhanced proliferation of osteoblasts at 4 days. Moreover, the gene expression level of several osteogenic markers including bone sialoprotein and osteopontin, as measured by RT-PCR at 24h, was shown to vary according to coating composition. These findings suggest that human primary bone cells show marked and rapid early functional changes in response to HA and TiO(2) sol-gel coatings on Ti.  相似文献   

16.
The features of implant devices and the reactions of bone-derived cells to foreign surfaces determine implant success during osseointegration. In an attempt to better understand the mechanisms underlying osteoblasts attachment and spreading, in this study adhesive peptides containing the fibronectin sequence motif for integrin binding (Arg-Gly-Asp, RGD) or mapping the human vitronectin protein (HVP) were grafted on glass and titanium surfaces with or without chemically induced controlled immobilization. As shown by total internal reflection fluorescence microscopy, human osteoblasts develop adhesion patches only on specifically immobilized peptides. Indeed, cells quickly develop focal adhesions on RGD-grafted surfaces, while HVP peptide promotes filopodia, structures involved in cellular spreading. As indicated by immunocytochemistry and quantitative polymerase chain reaction, focal adhesions kinase activation is delayed on HVP peptides with respect to RGD while an osteogenic phenotypic response appears within 24 h on osteoblasts cultured on both peptides. Cellular pathways underlying osteoblasts attachment are, however, different. As demonstrated by adhesion blocking assays, integrins are mainly involved in osteoblast adhesion to RGD peptide, while HVP selects osteoblasts for attachment through proteoglycan-mediated interactions. Thus an interfacial layer of an endosseous device grafted with specifically immobilized HVP peptide not only selects the attachment and supports differentiation of osteoblasts but also promotes cellular migration.  相似文献   

17.
We studied the attachment of astroglial cells on smooth silicon and arrays of silicon pillars and wells with various widths and separations. Standard semiconductor industry photolithographic techniques were used to fabricate pillar arrays and wells in single-crystal silicon. The resulting pillars varied in width from 0. 5 to 2.0 micrometer, had interpillar gaps of 1.0-5.0 micrometer, and were 1.0 micrometer in height. Arrays also contained 1.0-micromter-deep wells that were 0.5 micrometer in diameter and separated by 0.5-2.0 micrometer. Fluorescence, reflectance, and confocal light microscopies as well as scanning electron microscopy were used to quantify cell attachment, describe cell morphologies, and study the distribution of cytoskeletal proteins actin and vinculin on surfaces with pillars, wells, and smooth silicon. Seventy percent of LRM55 astroglial cells displayed a preference for pillars over smooth silicon, whereas only 40% preferred the wells to the smooth surfaces. Analysis of variance statistics performed on the data sets yielded values of p > approximately.5 for the comparison between pillar data sets and < approximately.0003 in the comparison between pillar and well data sets. Actin and vinculin distributions were highly polarized in cells found on pillar arrays. Scanning electron microscopy clearly demonstrated that cells made contact with the tops of the pillars and did not reach down into the spaces between pillars even when the interpillar gap was 5.0 microm. These experiments support the use of surface topography to direct the attachment, growth, and morphology of cells. These surfaces can be used to study fundamental cell properties such as cell attachment, proliferation, and gene expression. Such topography might also be used to modify implantable medical devices such as neural implants and lead to future developments in tissue engineering.  相似文献   

18.
The adhesion, orientation, and proliferation of human gingival fibroblasts was studied on electropolished (elpTi), etched (etchTi), and sandblasted (sblTi) titanium surfaces. The texture, chemical state, and composition of the titanium surfaces were analyzed using a surface tracing instrument and electron spectroscopy for chemical analysis. Considerable differences were evident in the surface texture and chemical composition of the differently treated titanium plates. Electropolishing produced the smoothest and cleanest surface. Human gingival fibroblasts attached, spread, and proliferated on all titanium surfaces. However, cells on elpTi exhibited an extremely flat morphology and seemed to form cellular bridges with adjacent cells, whereas the etchTi and sblTi surfaces harbored both round and flat cells with many long processes. Cells on elpTi appeared to grow in thick layers with no specific orientation, whereas on etchTi surfaces they were migrating along the parallel, irregular minor grooves caused by mechanical polishing, and on sblTi surfaces they seemed to grow in clusters. Stress-fiber type actin bundles and vinculin-containing focal adhesions were present in cells spreading on elpTi and etchTi surfaces but not in cells spreading on sblTi surfaces. Cell shape, orientation, and proliferation appear to depend on the texture of the titanium surface and probably also on the properties of the oxide layer and adjacent bulk material. Our findings suggest that smooth or finely grooved titanium surfaces could be optimal in implants adjacent to soft tissues as they support the attachment and growth of human gingival fibroblasts.  相似文献   

19.
ter Brugge PJ  Jansen JA 《Biomaterials》2002,23(15):3269-3277
Initial interactions of rat bone marrow (RBM) cells with smooth titanium, rough titanium or calcium phosphate coated substrates were tested. Cells were seeded onto the substrates, and attachment, integrin expression and spreading and morphology were studied. We found no difference in attachment of RBM cells to the different materials. We did find differences in the percentage of attached cells within a certain time between replicate runs of the experiments. RBM cells on all materials express alpha1, alpha3, alpha5, alpha6 and beta1 subunits. Again there was a large difference in expression patterns on RBM cells in different runs. No difference was found in expression on the various materials. For alpha1, alpha5, alpha6 and beta1, no difference was found in expression between attached and unattached cells. Expression of alpha3 was similar on attached and unattached cells during early culture. At the end of culture, alpha3 expression was downregulated for attached cells and not for unattached cells. This resulted in a higher expression of alpha3 for unattached cells compared to attached cells. Cells did spread on all materials, and reached a larger cell size on smooth titanium than on the rough materials. Morphology of the cells on the materials differed. On smooth titanium, cells usually showed a compact cell body with short cellular extensions. On the rough materials, cells often showed elongated shapes, with many thin cellular extensions. From this we conclude that the substrate surface characteristics of the materials we used do not influence attachment or integrin expression during the initial cell-material interactions. On the other hand, spreading behavior and cell morphology do depend on substrate surface characteristics.  相似文献   

20.
Recent trials on diamond-like carbon (DLC) coated medical devices have indicated promise for blood interfacing applications. The literature is sparse regarding structural and compositional effects of DLC on cellular response. An important goal in optimizing blood-interfacing implants is minimal macrophage attachment, and maximal albumin:fibrinogen adsorption ratio. DLC coatings deposited by PACVD and FAD, were analysed with respect to sp3 content (EELS), hydrogen content (ERDA), surface composition (XPS), surface roughness (AFM), surface energy, albumin:fibrinogen adsorption ratio, and macrophage viability and attachment. We found that increasing surface roughness and surface energy enhanced the macrophage viability and the albumin:fibrinogen adsorption ratio. We also found that the higher the hydrogen content for a-C:Hs deposited by PACVD, the lower the albumin:fibrinogen adsorption ratio, and macrophage attachment. This suggests that hydrogen content may be an important factor for influencing the biological response of DLC surfaces. Macrophage cells spread well on all DLC surfaces, and the surface results indicated the non-toxic nature of the surfaces on the cells at the time points tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号