首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 797 毫秒
1.
保持架是角接触球轴承的重要元件之一,其引导间隙和兜孔间隙设计不合理会导致轴承运动失稳与共振。针对上述问题,在理论分析的基础上,结合滚珠、保持架和滚道之间的动态接触与变形关系,在ABAQUS软件中建立了7005型角接触球轴承的显式动力学模型,并提取了特定工况下该轴承内圈、保持架与滚珠的动态响应曲线;同时,研究了不同引导间隙和兜孔间隙下保持架的打滑率、质心涡动速度偏差比和各阶振动模态的固有频率。为了验证所建立的角接触球轴承显式动力学模型的准确性,对高速角接触球轴承各元件线速度的仿真值与理论值进行了对比。结果表明:随着引导间隙的增大,保持架的打滑率、质心涡动速度偏差比和各阶振动模态的固有频率均减小,保持架的稳定性增强,但共振风险增大;随着兜孔间隙的增大,保持架的打滑率增大,质心涡动速度偏差比变化不明显,各阶振动模态的固有频率减小,保持架的稳定性减弱,共振风险增大。高速角接触球轴承各元件线速度的仿真值与理论值的最大误差仅为0.099 6%,验证了所建立的显式动力学模型的准确性。研究结果可为高速角接触球轴承保持架的优化设计提供理论依据。  相似文献   

2.
高速脂润滑圆锥滚子轴承保持架动态稳定性分析   总被引:1,自引:0,他引:1  
考虑脂润滑弹流润滑效应和挤压膜润滑效应,分析了保持架与轴承组件的多体接触作用关系,建立了计及润滑油膜等效刚度和等效阻尼的圆锥滚子轴承保持架全动力学模型。运用四阶Runge-Kutta方法计算分析了速度、载荷、预紧量等对保持架动态稳定性的影响规律,并对比分析了尼龙、钢和铜保持架的动态稳定性。分析结果表明:在平稳阶段,保持架与引导套圈接触力要远高于兜孔接触力,且保持架打滑率要低于滚动体打滑率;保持架和滚动体打滑率随轴承转速升高而增加,随载荷或预紧量的增加而减小;滚动体与兜孔间隙越小保持架动态稳定性越好,且兜孔接触力也越小;引导面间隙越小保持架与引导面的接触力越小,但保持架稳定性变差;在轴承转速分析范围内,尼龙和铜保持架的动态稳定性均随转速的提升而增加,在高速时钢保持架的稳定性要次于尼龙和铜保持架。  相似文献   

3.
针对高速主轴滚子轴承工况特点建立油气润滑下的滚子轴承拟静力学模型,通过具体算例分析了转速、载荷等工况条件以及轴承游隙和空心滚子等因素对滚子轴承的动态性能的影响,并在此基础上结合Lundberg寿命理论计算相关参数对滚子轴承疲劳寿命的影响。结果表明:高速轻载工况下轴承打滑比较严重,通过施加适量的预载荷或者使用空心滚子可以减小轴承的打滑,然而过大的预载荷会导致轴承疲劳寿命迅速降低;高速下空心滚子可以减轻滚子轴承打滑程度并提高轴承疲劳寿命。  相似文献   

4.
基于滚动轴承动力学理论,建立了高速圆柱滚子轴承的动力学非线性微分方程组。采用预估-校正的Gear stiff(GSTIFF)变步长积分算法进行求解,分析了轴承工况参数与结构参数对轴承保持架振动特性的影响。研究结果表明:保持架在径向平面内的振动随着径向载荷的增加而减小,振动频谱中f_c,2f_c,3f_c对应的幅值随径向载荷的增加而减小,其5f_c及更高倍频处的幅值显著降低,甚至消失,而径向载荷对4f_c处幅值的影响较为复杂;随着轴承转速的增加,保持架在径向平面内的振动随之增加;随着轴承径向游隙的增加,保持架径向平面内的振动先迅速增加后缓慢增加;过大或者过小的保持架引导间隙和兜孔周向间隙都会增加保持架的振动,存在一个最佳的保持架引导间隙和兜孔周向间隙范围能够有效的降低保持架的振动。  相似文献   

5.
高速角接触球轴承保持架不稳定运动机理分析   总被引:3,自引:0,他引:3  
建立了球和保持架六自由度的角接触球轴承动力学为基础的磨损仿真模型。以某仪表转子轴承为算例,分析了不同载荷工况和保持架间隙比下保持架的运动,从球与保持架兜孔碰撞点位置、碰撞力的大小和频率等方面探讨了保持架不稳定运动的机理。发现在纯轴向载荷下,因球与兜孔碰撞点位置的不同,保持架会沿轴向摆动;轴向径向联合载荷作用下,因球的轨道速度随接触角变化,球与保持架碰撞力和频率都增加,导致保持架的运动不稳定;轴向和旋转径向负荷下,保持架兜孔间隙与挡边间隙比B/R1时,保持架质心运动轨迹接近于圆形,保持架的离心力作用于球上增大了球与兜孔的碰摩;间隙比大于1时,保持架质心轨迹为多边形或无规律涡动,引导挡边对保持架的约束减小了球与兜孔的相互作用,保持架兜孔的磨损率较低;圆形的质心轨迹是保持架稳定运动的一种状态,但从保持架磨损和能耗的角度看,对保持架的磨损寿命不利。  相似文献   

6.
基于滚动轴承动力学理论,建立了高速圆柱滚子轴承的非线性动力学微分方程组,采用预估-校正的GSTIFF(Gear stiff)变步长积分算法对其进行求解,使用盒维数评价保持架质心轨迹的混乱程度,研究了保持架间隙比、轴承转速、轴承径向载荷、轴承径向游隙以及滚子个数等因素对保持架运行稳定性的影响。研究结果表明:盒维数能够发现相似保持架心轨迹之间的差别,并对保持架稳定性进行量化描述;较大的保持架间隙比不利于保持架的稳定运行,存在最佳间隙比使保持架质心轨迹涡动效果最好,保持架运行最稳定;内圈转速较低时,保持架质心不发生涡动,质心轨迹非常混乱,保持架运行不稳定;随着转速、滚子个数的增加,保持架运行稳定性增加;随着径向载荷、径向游隙的增加,保持架运行稳定性先增大后减小。  相似文献   

7.
冠形保持架重心位置直接影响高速深沟球轴承保持架动态性能,进而影响轴承高速工作性能和使用寿命。针对一种新型深沟球轴承修形冠形保持架,给出了冠形保持架修形半径与其重心位置的关系式,结合滚动轴承动力学理论,建立了深沟球轴承非线性动力学微分方程组,采用预估-矫正变步长积分法对轴承非线性动力学微分方程组进行求解,在此基础上,对冠形保持架修形半径与保持架振动特性的关系进行了分析。研究结果表明:冠形保持架修形半径能改变保持架重心与保持架兜孔中心面距离,降低保持架运转过程的附加力矩,有效降低保持架的振动;过大或过小的修形半径不利于减弱保持架的振动,当高速球轴承保持架修形半径为8.3 mm时,保持架加速度级达到最小,此时保持架振动最低;随着轴承使用条件改变,保持架振动加速度级随径向载荷增加呈现先增大后减小趋势;此外,保持架振动加速度级随轴承转速增加而增大,在轴承运行速度不变的情况下,考虑选取合适的保持架修形半径达到减弱保持架振动的效果;当轴向载荷与轴承额定动载荷比值在0.6%~0.8%时,保持架振动结果较小且轴承寿命较高。  相似文献   

8.
为了探究轴承产生故障时其内部元件间的运动规律,以高速列车轴箱轴承为研究对象,采用多体动力学分析软件 ADAMS 建立了外圈滚道剥离故障的轴承动力学模型。模型综合考虑了材料属性、约束、载荷和接触关系等因素,通过铁路轴承综合实验台对试验轴承进行动力学实验并对比部件转速,验证了模型的有效性。通过对外圈滚道不同损伤位置处的轴承进行动力学仿真分析发现:轴承有故障时,滚子与滚道间相邻两接触点的时间间隔变大;轴承故障的存在会加大滚子与滚道间的接触力,进而加剧轴承滚道的损坏;损伤位置位于 6 点钟时,对滚子打滑起到了抑制作用,滚子打滑率的增大会加剧滚道表面的不均匀擦伤;轴承转速越大,保持架运行越平稳,损伤位置位于12 点钟时,对保持架的平稳运行影响不大。研究结果对推动轴承设计和故障诊断技术发展具有一定的理论和实际意义。  相似文献   

9.
滚动轴承稳定工况下的滚动体打滑动力学分析   总被引:1,自引:0,他引:1  
打滑是造成滚动轴承表面擦伤甚至失效的重要原因,目前滚动轴承打滑的研究主要集中在恶劣工况,而对正常稳定工况下滚动体的打滑问题关注甚少。针对正常稳定工况下滚动体的打滑问题,考虑径向游隙、保持架兜孔间隙等非线性因素,基于线性压缩弹簧建立滚动体-保持架作用模型,采用分段线性函数描述摩擦因数与滑移速度的关系,建立滚动体打滑非线性动力学模型,分析滚动体在轴承运转过程中的打滑机理及工况参数对滚动体打滑的影响机理。研究结果表明:滚动体在承载区的前段存在急加速现象,存在相对较严重的打滑;滚动体与外圈的滑动相比内圈更严重;轴承转速的增加会增大承载区前段滚动体的打滑速度;载荷增加会降低滚动体打滑程度,缩小滚动体打滑范围。  相似文献   

10.
基于滚动轴承动力学理论,建立了时变载荷激励的空调滑片式压缩机用球轴承非线性动力学方程组,采用Gear Stiff(GSTIFF)变步长积分算法对其进行求解,就球轴承的结构参数和工况参数对球轴承振动特性的影响进行了分析。结果表明:时变载荷激励下球轴承的振动响应频率以时变载荷频率为主,表现出强迫振动,且振动速度幅值远高于恒定载荷下轴承振动速度幅值;结构参数中,原始径向游隙对球轴承振动特性影响显著,采取零游隙或负游隙能够有效地抑制时变载荷对轴承的冲击;保持架兜孔间隙对轴承振动影响较小,存在最优的保持架兜孔间隙使得保持架振动最小;考虑时变载荷的影响,对空调滑片式压缩机用球轴承施加0.3%~0.6%额定动载荷的轴向预紧力可实现降低轴承振动目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号